Universal parametrization and interpolation on cubic surfaces

被引:33
作者
Müller, R [1 ]
机构
[1] Tech Univ Darmstadt, D-64289 Darmstadt, Germany
关键词
universal parametrization; cubic surfaces; rational curves; rational patches; interpolation;
D O I
10.1016/S0167-8396(02)00125-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Universal parametrizations make it possible to find all rational parametrizations and all rational curves on an implicit surface. The rational curves and patches can be described with optimal degree as images under such a universal parametrization. Hence, the rational curves on the surface can be classified in a systematic way. Interpolation problems on the surface are reduced to ordinary interpolation problems. Other than a usual parametrization, a universal parametrizations allows to control the degree of the interpolating curve or patch on the surface. To avoid nonlinear equation systems, simpler parametrizations can be derived from a universal parametrization. We present universal parametrizations for three different classes of cubic surfaces. According to a conjecture by Krasauskas, this covers all cubic surfaces, which possess a universal parametrization. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:479 / 502
页数:24
相关论文
共 28 条
[1]   AUTOMATIC PARAMETRIZATION OF RATIONAL CURVES AND SURFACES .2. CUBICS AND CUBICOIDS [J].
ABHYANKAR, SS ;
BAJAJ, C .
COMPUTER-AIDED DESIGN, 1987, 19 (09) :499-502
[2]   Rational parametrizations of nonsingular real cubic surfaces [J].
Bajaj, CL ;
Holt, RJ ;
Netravali, AN .
ACM TRANSACTIONS ON GRAPHICS, 1998, 17 (01) :1-31
[3]   MODELING WITH CUBIC A-PATCHES [J].
BAJAJ, CL ;
CHEN, JD ;
XU, GL .
ACM TRANSACTIONS ON GRAPHICS, 1995, 14 (02) :103-133
[4]  
BERRY TG, 2001, IN PRESS COMPUTER AI
[5]  
Burau W., 1962, ALGEBRAISCHE KURVEN
[6]   AN ALGEBRAIC APPROACH TO CURVES AND SURFACES ON THE SPHERE AND ON OTHER QUADRICS [J].
DIETZ, R ;
HOSCHEK, J ;
JUTTLER, B .
COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (3-4) :211-229
[7]  
DIETZ R, 1995, THESIS TH DARMSTADT
[8]  
Edge WL., 1931, THEORY RULED SURFACE
[9]  
Henderson A., 1911, 27 LINES CUBIC SURFA
[10]  
KRASAUSKAS R, 2000, 200021 VILN U FAC MA