A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ

被引:303
作者
Gueiros, FJ [1 ]
Losick, R [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
关键词
FtsZ; cytokinesis; Bacillus subtilis; protein localization;
D O I
10.1101/gad.1014102
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cell division in bacteria is mediated by the tubulin-like protein FtsZ, which assembles into a structure known as the Z ring at the future site of cytokinesis. We report the discovery of a Z-ring-associated protein in Bacillus subtilis called ZapA. ZapA was found to colocalize with the Z ring in vivo and was capable of binding to FtsZ and stimulating the formation of higher-order assemblies of the cytokinetic protein in vitro. The absence of ZapA alone did not impair cell viability, but the absence of ZapA in combination with the absence of a second, dispensable division protein EzrA caused a severe block in cytokinesis. The absence of ZapA also caused lethality in cells producing lower than normal levels of FtsZ or lacking the division-site-selection protein DivIVA. Conversely, overproduction of ZapA reversed the toxicity of excess levels of the division inhibitor MinD). In toto, the evidence indicates that ZapA is part of the cytokinetic machinery of the cell and acts by promoting Z-ring formation. Finally, ZapA is widely conserved among bacteria with apparent orthologs in many species, including Escherichia coli, in which the orthologous protein exhibited a strikingly similar pattern of subcellular localization to that of ZapA. Members of the ZapA family of proteins are likely to be a common feature of the cytokinetic machinery in bacteria.
引用
收藏
页码:2544 / 2556
页数:13
相关论文
共 61 条
[1]   Temperature shift experiments with ftsZ84(Ts) strain reveal rapid dynamics of FtsZ localization and indicate that the Z ring is required throughout septation and cannot reoccupy division sites once constriction has initiated [J].
Addinall, SG ;
Cao, C ;
Lutkenhaus, J .
JOURNAL OF BACTERIOLOGY, 1997, 179 (13) :4277-4284
[2]   FtsZ ring formation in fts mutants [J].
Addinall, SG ;
Bi, EF ;
Lutkenhaus, J .
JOURNAL OF BACTERIOLOGY, 1996, 178 (13) :3877-3884
[3]   LOCALIZATION OF PROTEIN IMPLICATED IN ESTABLISHMENT OF CELL-TYPE TO SITES OF ASYMMETRIC DIVISION [J].
ARIGONI, F ;
POGLIANO, K ;
WEBB, CD ;
STRAGIER, P ;
LOSICK, R .
SCIENCE, 1995, 270 (5236) :637-640
[4]   Asymmetric cell division in B-subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ [J].
Ben-Yehuda, S ;
Losick, R .
CELL, 2002, 109 (02) :257-266
[5]   FTSZ RING STRUCTURE ASSOCIATED WITH DIVISION IN ESCHERICHIA-COLI [J].
BI, E ;
LUTKENHAUS, J .
NATURE, 1991, 354 (6349) :161-164
[6]   The divIVA minicell locus of Bacillus subtilis [J].
Cha, JH ;
Stewart, GC .
JOURNAL OF BACTERIOLOGY, 1997, 179 (05) :1671-1683
[7]   FTSZ IS AN ESSENTIAL CELL-DIVISION GENE IN ESCHERICHIA-COLI [J].
DAI, K ;
LUTKENHAUS, J .
JOURNAL OF BACTERIOLOGY, 1991, 173 (11) :3500-3506
[8]   A DIVISION INHIBITOR AND A TOPOLOGICAL SPECIFICITY FACTOR CODED FOR BY THE MINICELL LOCUS DETERMINE PROPER PLACEMENT OF THE DIVISION SEPTUM IN ESCHERICHIA-COLI [J].
DEBOER, PAJ ;
CROSSLEY, RE ;
ROTHFIELD, LI .
CELL, 1989, 56 (04) :641-649
[9]   The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division [J].
Edwards, DH ;
Errington, J .
MOLECULAR MICROBIOLOGY, 1997, 24 (05) :905-915
[10]   Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers [J].
Erickson, HP ;
Taylor, DW ;
Taylor, KA ;
Bramhill, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (01) :519-523