Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts

被引:543
作者
Kim, JH
Suh, DJ
Park, TJ
Kim, KL
机构
[1] Korea Inst Sci & Technol, Clean Technol Res Ctr, Seoul 136791, South Korea
[2] Yonsei Univ, Dept Chem Engn, Sudaemoon Ku, Seoul 120749, South Korea
关键词
methane; carbon dioxide; reforming; sol-gel; aerogel; nickel; alumina; metal particle size; deactivation; filamentous carbon;
D O I
10.1016/S0926-860X(99)00487-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 reforming of CH4 was carried out over Ni-alumina aerogel catalysts prepared with various Ni loadings. The preparation of alumina supported Ni catalysts via sol-gel synthesis and subsequent supercritical drying led to the formation of very small metal particles, which are evenly distributed over the alumina support. The activity of the aerogel catalysts increased along with increasing metal loading, and eventually, the SAA25 (0.25 in Ni/Al mole ratio) catalyst exhibited the high activity comparable to that of a 5 wt.% Ru/alumina catalyst (ESCAT44, Engelhard). Compared to the alumina-supported Ni catalyst prepared by conventional impregnation method, Ni-alumina aerogel catalysts showed a remarkably low coking rate due to highly dispersed metal particles. From TEM micrograph studies, it was observed that the formation of filamentous carbon was significantly influenced by the metal particle size and proceeded mostly over the metal particles larger than 7 nm. The loss of catalytic activity at 973 K was mainly caused by coke deposition and sintering. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 26 条
[1]   PARTIAL OXIDATION OF METHANE TO SYNTHESIS GAS-USING CARBON-DIOXIDE [J].
ASHCROFT, AT ;
CHEETHAM, AK ;
GREEN, MLH ;
VERNON, PDF .
NATURE, 1991, 352 (6332) :225-226
[2]   CARBON DEPOSITION IN STEAM REFORMING AND METHANATION [J].
BARTHOLOMEW, CH .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1982, 24 (01) :67-112
[3]   Catalytic reforming of methane with carbon dioxide over nickel catalysts .1. Catalyst characterization and activity [J].
Bradford, MCJ ;
Vannice, MA .
APPLIED CATALYSIS A-GENERAL, 1996, 142 (01) :73-96
[4]   HOW TO REDUCE THE GREENHOUSE-EFFECT, AND A FEW OTHER QUESTIONS CONCERNING CATALYSIS [J].
DELMON, B .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1992, 1 (03) :139-147
[5]   DEACTIVATION OF STEAM-REFORMING MODEL CATALYSTS BY COKE FORMATION .1. KINETICS OF THE FORMATION OF FILAMENTOUS CARBON IN THE HYDROGENOLYSIS OF CYCLOPENTANE ON NI/AL2O3 CATALYSTS [J].
DUPREZ, D ;
DEMICHELI, MC ;
MARECOT, P ;
BARBIER, J ;
FERRETTI, OA ;
PONZI, EN .
JOURNAL OF CATALYSIS, 1990, 124 (02) :324-335
[6]   THE CHEMISTRY OF METHANE REFORMING WITH CARBON-DIOXIDE AND ITS CURRENT AND POTENTIAL APPLICATIONS [J].
EDWARDS, JH ;
MAITRA, AM .
FUEL PROCESSING TECHNOLOGY, 1995, 42 (2-3) :269-289
[7]   Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts .2. A steady-state tracing analysis: Mechanistic aspects of the carbon and oxygen reaction pathways to form CO [J].
Efstathiou, AM ;
Kladi, A ;
Tsipouriari, VA ;
Verykios, XE .
JOURNAL OF CATALYSIS, 1996, 158 (01) :64-75
[8]   ACTIVATION OF CH4 AND ITS REACTION WITH CO2 OVER SUPPORTED RH CATALYSTS [J].
ERDOHELYI, A ;
CSERENYI, J ;
SOLYMOSI, F .
JOURNAL OF CATALYSIS, 1993, 141 (01) :287-299
[9]   SYNTHESIS AND CHARACTERIZATION OF CATALYSTS IN THE SYSTEM AL2O3-MGO-NIO-NI FOR METHANE REFORMING WITH CO2 [J].
GADALLA, AM ;
SOMMER, ME .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1989, 72 (04) :683-687
[10]   THE ROLE OF CATALYST SUPPORT ON THE ACTIVITY OF NICKEL FOR REFORMING METHANE WITH CO2 [J].
GADALLA, AM ;
BOWER, B .
CHEMICAL ENGINEERING SCIENCE, 1988, 43 (11) :3049-3062