The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices

被引:17
作者
Nooney, JM [1 ]
Lodge, D [1 ]
机构
[1] LILLY RES CTR LTD, SURREY GU20 6PH, ENGLAND
关键词
hippocampus; Ca2+ channel; conotoxin; omega-agatoxin-IVA;
D O I
10.1016/0014-2999(96)00195-1
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The relative contribution(s) of different Ca2+ channel subtypes to synaptic transmission between Schaffer collaterals of hippocampal CA3 pyramidal cells and CA1 pyramidal cell dendrites has been assessed using the synthetic invertebrate peptide toxins omega-conotoxin GVIA to block N-type Ca2+ channels, omega-agatoxin-IVA to block P-type Ca2+ channels and omega-conotoxin MVIIC to block N-, P- and Q-type Ca2+ channels. omega-Agatoxin-IVA, omega-conctoxin GVIA and omega-conotoxin MVIIC all produced dose-dependent inhibitions of the excitatory post-synaptic field potential (fEPSP) recorded from the CA1 region of transverse hippocampal slices. Application of 300 nM omega-conotoxin GVIA generally produced no further inhibition to that observed with 100 nM, resulting in a maximal 50% inhibition of the fEPSP. By contrast, 30 nM omega-agatoxin-IVA reduced the fEPSP slope by only 4.6 +/- 11.1% (mean +/- S.D., n = 3), suggesting the lack of involvement of classical P-type Ca2+ channels, whereas 300 nM omega-agatoxin-IVA reduced the fEPSP slope by 85.7 +/- 15.3% (n = 3) at the end of 44 min application. Similar applications of 100 and 300 nM omega-conotoxin MVIIC reduced the fEPSP slope by 30.9 +/- 6.6% and 79.7 +/- 5.7% respectively. Application of 30 nM omega-agatoxin-IVA together with omega-conotoxin GVIA (300 nM) produced no greater inhibition of the fEPSP than that observed with omega-conotoxin GVIA alone, suggesting that the omega-agatoxin-IVA-sensitive and omega-conotoxin MVIIC-sensitive component presents a pharmacology similar to the reported Q-type Ca2+ channel. The inhibition produced by omega-conotoxin GVIA and omega-conotoxin MVIIC showed no recovery with prolonged washing (1-2 h) whereas that produced by omega-agatoxin-IVA was slowly reversible. The observation that omega-agatoxin-IVA, which does not effect N-type Ca2+ channels (Mintz et al. (1992a) Neuron 9, 85), is capable of completely suppressing the fEPSP suggests that, whilst N-type Ca2+ channels may contribute to normal synaptic transmission at Schaffer collateral-CAl synapses, they are not capable of supporting transmission when Q-type channels are blocked.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 39 条
[1]   TOXITYPING RAT-BRAIN CALCIUM CHANNELS WITH OMEGA-TOXINS FROM SPIDER AND CONE SNAIL VENOMS [J].
ADAMS, ME ;
MYERS, RA ;
IMPERIAL, JS ;
OLIVERA, BM .
BIOCHEMISTRY, 1993, 32 (47) :12566-12570
[2]   THE CALCIUM SIGNAL FOR TRANSMITTER SECRETION FROM PRESYNAPTIC NERVE-TERMINALS [J].
AUGUSTINE, GJ ;
ADLER, EM ;
CHARLTON, MP .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES-SERIES, 1991, 635 :365-381
[3]   CALCIUM ENTRY AND TRANSMITTER RELEASE AT VOLTAGE-CLAMPED NERVE-TERMINALS OF SQUID [J].
AUGUSTINE, GJ ;
CHARLTON, MP ;
SMITH, SJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1985, 367 (OCT) :163-181
[4]   CALCIUM DEPENDENCE OF PRESYNAPTIC CALCIUM CURRENT AND POSTSYNAPTIC RESPONSE AT THE SQUID GIANT SYNAPSE [J].
AUGUSTINE, GJ ;
CHARLTON, MP .
JOURNAL OF PHYSIOLOGY-LONDON, 1986, 381 :619-640
[5]   INHIBITION OF ENDOGENOUS GLUTAMATE RELEASE FROM HIPPOCAMPAL TISSUE BY CA2+ CHANNEL TOXINS [J].
BURKE, SP ;
ADAMS, ME ;
TAYLOR, CP .
EUROPEAN JOURNAL OF PHARMACOLOGY, 1993, 238 (2-3) :383-386
[6]   THE ROLE OF CA2+ CHANNELS IN HIPPOCAMPAL MOSSY FIBER SYNAPTIC TRANSMISSION AND LONG-TERM POTENTIATION [J].
CASTILLO, PE ;
WEISSKOPF, MG ;
NICOLL, RA .
NEURON, 1994, 12 (02) :261-269
[7]   CO-OPERATIVE ACTION OF CALCIUM IONS IN TRANSMITTER RELEASE AT NEUROMUSCULAR JUNCTION [J].
DODGE, FA ;
RAHAMIMO.R .
JOURNAL OF PHYSIOLOGY-LONDON, 1967, 193 (02) :419-&
[8]  
DUNLAP K, 1994, SCIENCE, V266, P828, DOI 10.1126/science.7973643
[9]   EXOCYTOTIC CA2+ CHANNELS IN MAMMALIAN CENTRAL NEURONS [J].
DUNLAP, K ;
LUEBKE, JI ;
TURNER, TJ .
TRENDS IN NEUROSCIENCES, 1995, 18 (02) :89-98
[10]   OMEGA-CONOTOXIN GVIA BLOCKS SYNAPTIC TRANSMISSION IN THE CA1 FIELD OF THE HIPPOCAMPUS [J].
DUTAR, P ;
RASCOL, O ;
LAMOUR, Y .
EUROPEAN JOURNAL OF PHARMACOLOGY, 1989, 174 (2-3) :261-266