Structure-property relationships provide valuable guidelines for a systematic development of functional materials. Here an augmented bond-valence approach is worked out that is linked directly to the energy scale. This energy-scaled bond-valence approach is then used to identify ion-conduction pathways and to establish structure-property relationships in complex disordered solids using lithium silicate glasses as model systems. Representative local structure models of glassy solid electrolytes as a basis for the pathway analysis are derived from molecular dynamics simulations. Predictions of the bond-valence model from a static structure model are compared to a complete trajectory analysis, showing a high degree of agreement. The method yields consistent results when changing the simulation force. field and is applicable to a wide range of glasses.