Cloning and mRNA tissue distribution of human PPARγ coactivator-1

被引:74
作者
Larrouy, D
Vidal, H
Andreelli, F
Laville, M
Langin, D
机构
[1] Univ Toulouse 3, INSERM, U317, Inst Louis Bugnard,Hop Rangueil, F-31062 Toulouse 4, France
[2] Fac Med RTH Laennec, INSERM, U449, Lyon 08, France
[3] Fac Med RTH Laennec, Ctr Rech Nutr Humaine Lyon, Lyon 08, France
关键词
thermogenesis; fasting; nuclear receptors; uncoupling protein; mitochondria; skeletal muscle;
D O I
10.1038/sj.ijo.0801106
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
OBJECTIVES: To determine human PPAR gamma coactivator-1 (PGC-1) amino acid sequence and to study PGC-1 mRNA tissue distribution. PGC-1 is a novel transcriptional coactivator of nuclear receptors that may play a role in the control of thermogenesis. SUBJECTS: Subcutaneous adipose tissue was obtained from six obese and five lean male subjects. Vastus lateralis skeletal muscle was obtained from seven lean and six obese subjects undergoing a 5-day severe calorie restriction. Other tissue biopsies were from nonobese nondiabetic subjects. METHODS: Human PGC-1 was cloned from a skeletal muscle cDNA library. A reverse transcription-competitive polymerase chain reaction assay was developed to determine PGC-1 mRNA levels in human tissues. RESULTS: The human amino acid sequence showed 95% identity with mouse PGC-1, PGC-1 mRNA was expressed at very low levels in the small and large intestines and white adipose tissue. Heart, kidney, liver and skeletal muscle showed higher mRNA levels. The degree of obesity did not affect PGC-1 mRNA levels in adipose tissue while lean subjects expressed more PGC-1 mRNA than obese subjects in skeletal muscle. A 5-day severe calorie restriction induced PGC-1 mRNA expression in skeletal muscle of obese but not of lean subjects. CONCLUSION: PGC-1 shows a restricted tissue expression that suggests a tissue-specific role in the control of gene transcription and possible interaction with various members of the PPAR family. The lower expression of skeletal muscle PGC-1 in obesity could contribute to an alteration of mitochondrial gene expression.
引用
收藏
页码:1327 / 1332
页数:6
相关论文
共 33 条
[1]   Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells [J].
Aubert, J ;
Champigny, O ;
SaintMarc, P ;
Negrel, R ;
Collins, S ;
Ricquier, D ;
Ailhaud, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 238 (02) :606-611
[2]   Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans - No alteration in adipose tissue of obese and NIDDM patients [J].
Auboeuf, D ;
Rieusset, J ;
Fajas, L ;
Vallier, P ;
Frering, V ;
Riou, JP ;
Staels, P ;
Auwerx, J ;
Laville, M ;
Vidal, H .
DIABETES, 1997, 46 (08) :1319-1327
[3]  
Auboeuf D, 1997, ANAL BIOCHEM, V245, P141, DOI 10.1006/abio.1996.9986
[4]   Uncoupling protein-2 messenger ribonucleic acid expression during very-low-calorie diet in obese premenopausal women [J].
Barbe, P ;
Millet, L ;
Larrouy, D ;
Galitzky, J ;
Berlan, M ;
Louvet, JP ;
Langin, D .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1998, 83 (07) :2450-2453
[5]   The uncoupling proteins, a review [J].
Boss, O ;
Muzzin, P ;
Giacobino, JP .
EUROPEAN JOURNAL OF ENDOCRINOLOGY, 1998, 139 (01) :1-9
[6]   Uncoupling protein-3 expression in skeletal muscle and free fatty acids in obesity [J].
Boss, O ;
Bobbioni-Harsch, E ;
Assimacopoulos-Jeannet, F ;
Muzzin, P ;
Munger, R ;
Giacobino, JP ;
Golay, A .
LANCET, 1998, 351 (9120) :1933-1933
[7]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[8]   Thiazolidinediones stimulate uncoupling protein-2 expression in cell lines representing white and brown adipose tissues and skeletal muscle [J].
Camirand, A ;
Marie, V ;
Rabelo, R ;
Silva, JE .
ENDOCRINOLOGY, 1998, 139 (01) :428-431
[9]   SKELETAL-MUSCLE UTILIZATION OF FREE FATTY-ACIDS IN WOMEN WITH VISCERAL OBESITY [J].
COLBERG, SR ;
SIMONEAU, JA ;
THAETE, FL ;
KELLEY, DE .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 95 (04) :1846-1853
[10]   Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia [J].
Fleury, C ;
Neverova, M ;
Collins, S ;
Raimbault, S ;
Champigny, O ;
LeviMeyrueis, C ;
Bouillaud, F ;
Seldin, MF ;
Surwit, RS ;
Ricquier, D ;
Warden, CH .
NATURE GENETICS, 1997, 15 (03) :269-272