Diagnostic classification of cancer using DNA microarrays and artificial intelligence

被引:30
作者
Greer, BT [1 ]
Khan, J [1 ]
机构
[1] NCI, Ctr Adv Technol, NIH, Gaithersburg, MD 20877 USA
来源
APPLICATIONS OF BIOINFORMATICS IN CANCER DETECTION | 2004年 / 1020卷
关键词
artificial neural networks; support vector machines; artificial intelligence; microarray;
D O I
10.1196/annals.1310.007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The application of artificial intelligence (AI) to microarray data has been receiving much attention in recent years because of the possibility of automated diagnosis in the near future. Studies have been published predicting tumor type, estrogen receptor status, and prognosis using a variety of AI algorithms. The performance of intelligent computing decisions based on gene expression signatures is in some cases comparable to or better than the current clinical decision schemas. The goal of these tools is not to make clinicians obsolete, but rather to give clinicians one more tool in their armamentarium to accurately diagnose and hence better treat cancer patients. Several such applications are summarized in this chapter, and some of the common pitfalls are noted.
引用
收藏
页码:49 / 66
页数:18
相关论文
共 17 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[3]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914
[4]  
Gruvberger S, 2001, CANCER RES, V61, P5979
[5]  
Haykin S., 1999, Neural Networks: A Comprehensive Foundation, V2nd ed
[6]   Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [J].
Khan, J ;
Wei, JS ;
Ringnér, M ;
Saal, LH ;
Ladanyi, M ;
Westermann, F ;
Berthold, F ;
Schwab, M ;
Antonescu, CR ;
Peterson, C ;
Meltzer, PS .
NATURE MEDICINE, 2001, 7 (06) :673-679
[7]   Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect [J].
O'Neill, MC ;
Song, L .
BMC BIOINFORMATICS, 2003, 4 (1)
[8]   Steroid hormone receptors in breast cancer management [J].
Osborne, CK .
BREAST CANCER RESEARCH AND TREATMENT, 1998, 51 (03) :227-238
[9]  
Parl F. F., 2000, ESTROGENS ESTROGEN R
[10]   Computational analysis of microarray data [J].
Quackenbush, J .
NATURE REVIEWS GENETICS, 2001, 2 (06) :418-427