Local activity criteria for discrete-map CNN

被引:7
作者
Sbitnev, VI [1 ]
Chua, LO [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2002年 / 12卷 / 06期
基金
美国国家科学基金会;
关键词
local activity principle; discrete map CNN; edge of chaos; cellular neural networks; cellular nonlinear networks; CNN;
D O I
10.1142/S0218127402005157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Discrete-time CNN systems are studied in this paper by the application of Chua's local activity principle. These systems are locally active everywhere except for one isolated parameter value. As a result, nonhomogeneous spatiotemporal patterns may be induced by any initial setting of the CNN system when the strength of the system diffusion coupling exceeds a critical threshold. The critical coupling coefficient can be derived from the loaded cell impedance of the CNN system. Three well-known 1D map CNN's (namely, the logistic map CNN, the magnetic vortex pinning map CNN, and the spiral wave reproducing map CNN) are introduced to illustrate the applications of the local activity principle. In addition, we use the cell impedance to demonstrate the period-doubling scenario in the logistic and the magnetic vortex pinning maps.
引用
收藏
页码:1227 / 1272
页数:46
相关论文
共 34 条
[1]   SPIN-GLASS MODELS OF NEURAL NETWORKS [J].
AMIT, DJ ;
GUTFREUND, H .
PHYSICAL REVIEW A, 1985, 32 (02) :1007-1018
[2]   STORING INFINITE NUMBERS OF PATTERNS IN A SPIN-GLASS MODEL OF NEURAL NETWORKS [J].
AMIT, DJ ;
GUTFREUND, H ;
SOMPOLINSKY, H .
PHYSICAL REVIEW LETTERS, 1985, 55 (14) :1530-1533
[3]  
[Anonymous], COMPLEX SYST
[4]  
Arnold D. V., 1996, Complex Systems, V10, P143
[5]  
Beck C., 1993, THERMODYNAMICS CHAOT
[6]  
Campbell A.M., 1972, CRITICAL CURRENTS SU
[7]   Passivity and complexity [J].
Chua, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (01) :71-82
[8]  
Chua LO, 1998, CNN: A Paradigm for Complexity
[9]  
CROSS MC, 1993, REV MOD PHYS, V65, P3
[10]  
Crutchfield J. P., 1987, Directions in chaos. Vol.1, P272