Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells

被引:138
作者
Unwin, Richard D.
Smith, Duncan L.
Blinco, David
Wilson, Claire L.
Miller, Crispin J.
Evans, Caroline A.
Jaworska, Ewa
Baldwin, Stephen A.
Barnes, Kay
Pierce, Andrew
Spooncer, Elaine
Whetton, Anthony D.
机构
[1] Univ Manchester, Stem Cell & Leukaemia Proteom Lab, Fac Med & Human Sci, Manchester M20 4QL, Lancs, England
[2] Christie Hosp, Bioinformat Grp, Paterson Inst Canc Res, Manchester, Lancs, England
[3] Univ Leeds, Inst Membrane & Syst Biol, Fac Biol Sci, Leeds, W Yorkshire, England
基金
英国惠康基金;
关键词
D O I
10.1182/blood-2005-12-4995
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The proteome is determined by rates of transcription, translation, and protein turnover. Definition of stem cell populations therefore requires a stem cell proteome signature. However, the limit to the number of primary cells available has restricted extensive proteomic analysis. We present a mass spectrometric method using an isobaric covalent modification of peptides for relative quantification (ITRAQ), which was employed to compare the proteomes of approximately 1 million long-term reconstituting hematopoietic stem cells (Lin(-)Sca(+)Kit(+); LSK+) and non-long-term reconstituting progenitor cells (Lin(-)Sca(+)Kit(-); LSK-), respectively. Extensive 2-dimensional liquid chromatography (LC) peptide separation prior to mass spectrometry (MS) enabled enhanced proteome coverage with relative quantification of 948 proteins. Of the 145 changes in the proteome, 54% were not seen in the transcriptome. Hypoxia-related changes in proteins controlling metabolism and oxidative protection were observed, indicating that LSK+ cells are adapted for anaerobic environments. This approach can define proteomic changes in primary samples, thereby characterizing the molecular signature of stem cells and their progeny.
引用
收藏
页码:4687 / 4694
页数:8
相关论文
共 39 条
[1]  
ALLEN TD, 1984, EXP HEMATOL, V12, P517
[2]  
ALLEN TD, 1983, SCAN ELECTRON MICROS, P1851
[3]   Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface [J].
Bentley, J ;
Itchayanan, D ;
Barnes, K ;
McIntosh, E ;
Tang, XW ;
Downes, CP ;
Holman, GD ;
Whetton, AD ;
Owen-Lynch, PJ ;
Baldwin, SA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (41) :39337-39348
[4]   Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial cells [J].
Brown, RC ;
Davis, TP .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 327 (04) :1114-1123
[5]   Macrophage migration inhibitory factor: A regulator of innate immunity [J].
Calandra, T ;
Roger, T .
NATURE REVIEWS IMMUNOLOGY, 2003, 3 (10) :791-800
[6]   SCL/Tal-1 is essential for hernatopoietic commitment of the hemangioblast but not for its development [J].
D'Souza, SL ;
Elefanty, AG ;
Keller, G .
BLOOD, 2005, 105 (10) :3862-3870
[7]   Dystonin is essential for maintaining neurones cytoskeleton organization [J].
Dalpé, G ;
Leclerc, N ;
Vallée, A ;
Messer, A ;
Mathieu, M ;
De Repentigny, Y ;
Kothary, R .
MOLECULAR AND CELLULAR NEUROSCIENCE, 1998, 10 (5-6) :243-257
[8]   Expansion of human SCID-repopulating cells under hypoxic conditions [J].
Danet, GH ;
Pan, Y ;
Luongo, JL ;
Bonnet, DA ;
Simon, MC .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (01) :126-135
[9]   Comparative proteomics of primitive hematopoietic cell populations reveals differences in expression of proteins regulating motility [J].
Evans, CA ;
Tonge, R ;
Blinco, D ;
Pierce, A ;
Shaw, J ;
Lu, YN ;
Hamzah, HG ;
Gray, A ;
Downes, CP ;
Gaskell, SJ ;
Spooncer, E ;
Whetton, AD .
BLOOD, 2004, 103 (10) :3751-3759
[10]   Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1) [J].
Greijer, AE ;
van der Groep, P ;
Kemming, D ;
Shvarts, A ;
Semenza, GL ;
Meijer, GA ;
van de Wiel, MA ;
Belien, JAM ;
van Diest, PJ ;
van der Wall, E .
JOURNAL OF PATHOLOGY, 2005, 206 (03) :291-304