On the application of ionic liquids for rechargeable Li batteries: High voltage systems

被引:246
作者
Borgel, V. [1 ]
Markevich, E. [1 ]
Aurbach, D. [1 ]
Semrau, G. [2 ]
Schmidt, M. [2 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Merck KGaA, D-64293 Darmstadt, Germany
关键词
5 V Li batteries; LiMn1.5Ni0.5O4; Ionic liquids; LiTFSI; Passivation; LITHIUM SECONDARY BATTERIES; IN-SITU RAMAN; ELEVATED-TEMPERATURES; GRAPHITE-ELECTRODES; CATHODE MATERIALS; METAL-ELECTRODES; MANGANESE OXIDES; X-RAY; ELECTROLYTES; SPECTROSCOPY;
D O I
10.1016/j.jpowsour.2008.08.099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We examined the possible use of the following ionic liquids all having the same anion, bis(trifluoromethylsulfonyl)imide (TFSI) and the following cations: 1-hexyl-3-methyl imidazolium (HMITFSI), 1-(2-methoxyethyl)-3-methyl imidazolium (MEMITFSI), N-ethyl-NN-dimethyl-2-methoxyethylammonium (EDMETFSI), 1-methyl-1-butylpyrrolidinium (BMPTFSI), and 1-methyl-1-propylpiperidinium (MPPpTFSI) solutions with LiTFSI (the source of Li ions), as electrolyte systems for 5V, rechargeable battery systems with Li metal anodes and LiMn1.5Ni0.5O4 spinel cathodes. Standard solution based on alkyl carbonates and LiPF6 was examined in this respect for comparison. The ionic liquids (ILs) based oil derivatives of piperidinium and pyrrolidinium demonstrate a very wide electrochemical window (up to 5.5V) and they can be compatible with lithium metal anodes. At low potentials in the presence of Li ions in solutions (or on Li metal surfaces), TFSI anions are reduced to insoluble Li compounds which passivate Li, noble metal and graphite electrodes in the Li salt/IL solutions. The mechanism, kinetics and effectiveness of electrodes' passivation in these systems depend on the nature of both IL and electrode used. It was possible to demonstrate reversible behavior of Li/LiMn1.5Ni0.5O4 cells (4.8V) with solutions based on BMPTFSI and MPPpTFSI. Possible parasitic anodic reactions upon charging at the high potentials are much lower in the ILs than in standard solutions. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 40 条
[1]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[2]   LiC(SO2CF3)3, a new salt for Li battery systems. A comparative study of Li and non-active metal electrodes in its ethereal solutions using in situ FTIR spectroscopy [J].
Aurbach, D ;
Chusid, O ;
Weissman, I ;
Dan, P .
ELECTROCHIMICA ACTA, 1996, 41 (05) :747-760
[3]   THE ELECTROCHEMICAL-BEHAVIOR OF SELECTED POLAR AROTIC SYSTEMS [J].
AURBACH, D ;
GOTTLIEB, H .
ELECTROCHIMICA ACTA, 1989, 34 (02) :141-156
[4]   X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy [J].
Aurbach, D ;
Weissman, I ;
Schechter, A ;
Cohen, H .
LANGMUIR, 1996, 12 (16) :3991-4007
[5]   Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells [J].
Aurbach, Doron ;
Markovsky, Boris ;
Talyossef, Yosef ;
Salitra, Gregory ;
Kim, Hyeong-Jin ;
Choi, Seungdon .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :780-789
[6]   In situ Raman spectroscopy study of different kinds of graphite electrodes in ionic liquid electrolytes [J].
Baranchugov, V. ;
Markevich, E. ;
Salitra, G. ;
Aurbach, D. ;
Semrau, Guenter ;
Schmidt, Michael A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (03) :A217-A227
[7]   Non-haloaluminate room-temperature ionic liquids in electrochemistry - A review [J].
Buzzeo, MC ;
Evans, RG ;
Compton, RG .
CHEMPHYSCHEM, 2004, 5 (08) :1106-1120
[8]   LiMn2-xCuxO4 spinels (0.1≤x≤0.5):: A new class of 5 V cathode materials for Li batteries -: I.: Electrochemical, structural, and spectroscopic studies [J].
Ein-Eli, Y ;
Howard, WF ;
Lu, SH ;
Mukerjee, S ;
McBreen, J ;
Vaughey, JT ;
Thackeray, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (04) :1238-1244
[9]   The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: Electrochemical couples and physical properties [J].
Fuller, J ;
Carlin, RT ;
Osteryoung, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (11) :3881-3886
[10]   Room temperature molten salts as lithium battery electrolyte [J].
Garcia, B ;
Lavallée, S ;
Perron, G ;
Michot, C ;
Armand, M .
ELECTROCHIMICA ACTA, 2004, 49 (26) :4583-4588