Random codes: Minimum distances and error exponents

被引:153
作者
Barg, A [1 ]
Forney, GD
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[2] Inst Informat Transmiss Problems, Moscow, Russia
[3] MIT, Cambridge, MA 02139 USA
关键词
distance distributions; exponential error bounds; minimum distance; random codes; random linear codes; typical linear codes; typical random codes;
D O I
10.1109/TIT.2002.800480
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Minimum distances, distance distributions, and error exponents on a binary-symmetric channel (BSC) are given for typical codes from Shannon's random code ensemble and for typical codes from a random linear code ensemble. A typical random code of length N and rate R is shown to have minimum distance Ndelta(GV) (2R), where delta(GV) (R) is the Gilbert-Varshamov (GV) relative distance at rate R, whereas a typical linear code (TLC) has minimum distance Ndelta(GV) (R). Consequently, a TLC has a better error exponent on a BSC at low rates, namely, the expurgated error exponent.
引用
收藏
页码:2568 / 2573
页数:6
相关论文
共 9 条
[1]  
Bassalygo LA, 1991, PROBL PERED INFORM, V27, P3
[2]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[3]   The method of types [J].
Csiszar, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2505-2523
[4]  
D'yachkov A. G., 1980, Problems of Information Transmission, V16, P255
[5]   RANDOM CODING BOUND IS TIGHT FOR AVERAGE CODE [J].
GALLAGER, RG .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (02) :244-246
[6]  
GALLAGER RG, 1968, INFORMATION THEORY R
[7]  
Gallager RG, 1963, LOW DENSITY PARITY C
[8]  
MEZARD M, 2001, WORKSH STAT PHYS CAP
[9]  
Viterbi A. J., 1979, PRINCIPLES DIGITAL C