Anti-Kahlerian manifolds

被引:41
作者
Borowiec, A
Francaviglia, M
Volovich, I
机构
[1] Univ Wroclaw, Inst Theoret Phys, PL Maksa Borna 9, PL-50204 Wroclaw, Poland
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[3] Russian Acad Sci, Steklov Math Inst, Moscow 117966, Russia
关键词
Einstein metrics; holomorphic metrics; complex manifolds; Kahler condition; complex Riemannian geometry;
D O I
10.1016/S0926-2245(00)00017-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An anti-Kahlerian manifold is a complex manifold with an anti-Hermitian metric and a parallel almost complex structure. It is shown that a metric on such a manifold must be the real part of a holomorphic metric. It is proved that all odd Chern numbers of an anti-Kahlerian manifold vanish and that complex parallelisable manifolds (in particular the factor space G/D of a complex Lie group G over the discrete subgroup D) are anti-Kahlerian manifolds. A method of generating new solutions of Einstein equations by using the theory of anti-Kahlerian manifolds is presented.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 22 条
[1]  
[Anonymous], RIV MAT U PARMA
[2]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[3]  
BLAZIC N, 1996, DIFFERENTIAL GEOMETR, P249
[4]   Universality of the Einstein equations for Ricci squared Lagrangians [J].
Borowiec, A ;
Ferraris, M ;
Francaviglia, M ;
Volovich, I .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (01) :43-55
[5]   Almost-complex and almost-product Einstein manifolds from a variational principle [J].
Borowiec, A ;
Ferraris, M ;
Francaviglia, M ;
Volovich, I .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (07) :3446-3464
[6]  
Bourguignon J.P., 1981, Lecture Notes in Math., V838, P42
[7]  
Castro R., 1989, RIV MAT UNIV PARMA, V15, P133
[8]   NON-LINEAR GRAVITON IN INTERACTION WITH A PHOTON [J].
FLAHERTY, EJ .
GENERAL RELATIVITY AND GRAVITATION, 1978, 9 (11) :961-978
[9]  
FLAHERTY EJ, 1976, LECT NOTES PHYSICS, V46
[10]  
GANCHEV GT, 1986, DOKL BOLG AKAD NAUK, V39, P31