Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants

被引:73
作者
Igamberdiev, AU
Bykova, NV
Gardestrom, P
机构
[1] VORONEZH STATE UNIV,DEPT PLANT PHYSIOL & BIOCHEM,VORONEZH 394693,RUSSIA
[2] UMEA UNIV,DEPT PLANT PHYSIOL,S-90187 UMEA,SWEDEN
基金
俄罗斯基础研究基金会;
关键词
cyanide-resistant oxidase; glycine decarboxylase complex; mitochondrial electron transport chain; photorespiration; rotenone-resistant NADH dehydrogenase;
D O I
10.1016/S0014-5793(97)00756-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolism of glycine in isolated mitochondria and protoplasts was investigated in photosynthetic, etiolated (barley and pea leaves) and fat-storing (maize scutellum) tissues using methods of [1-C-14]glycine incorporation and counting of (CO2)-C-14 evolved, oxymetric measurement of glycine oxidation and rapid fractionation of protoplasts incubated in photorespiratory conditions with consequent determination of ATP/ADP ratios in different cell compartments, The involvement of different paths of electron transport in mitochondria during operation of glycine decarboxylase complex (GDC) was tested in different conditions, using aminoacetonitrile (AAN), the inhibitor of glycine oxidation in mitochondria, rotenone, the inhibitor of Complex I of mitochondrial electron transport, and inhibitors of cytochrome oxidase and alternative oxidase, It was shown that glycine has a preference to other substrates oxidized in mitochondria only in photosynthetic tissue where succinate and malate even stimulated its oxidation, Rotenone had no or small effect on glycine oxidation, whereas the role of cyanide-resistant path increased in the presence of ATP, Glycine oxidation increased ATP/ADP ratio in cytosol of barley protoplasts incubated in the presence of CO2, but not in the CO2-free medium indicating that in conditions of high photorespiratory nus oxidation of NADH formed in the GDC reaction passes via the non-coupled paths, Activity of GDC in fat-storing tissue correlated with the activity of glyoxylate-cycle enzymes, glycine oxidation did not reveal preference to other substrates and the involvement of paths non-connected with proton translocation was not pronounced, It is suggested that the preference of glycine to other substrates oxidized in mitochondria is achieved in photosynthetic tissue by switching to rotenone-insensitive intramitochrondrial NADH oxidation and by increasing of alternative oxidase involvement in the presence of glycine. (C) 1997 Federation of European Biochemical Societies.
引用
收藏
页码:265 / 269
页数:5
相关论文
共 31 条
[1]   EFFECTS OF PH, NADH, SUCCINATE AND MALATE ON THE OXIDATION OF GLYCINE IN SPINACH LEAF MITOCHONDRIA [J].
BERGMAN, A ;
ERICSON, I .
PHYSIOLOGIA PLANTARUM, 1983, 59 (03) :421-427
[2]   A COMMENT ON SPECTROPHOTOMETRIC DETERMINATION OF CHLOROPHYLL [J].
BRUINSMA, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1961, 52 (03) :576-&
[3]  
DIXON GH, 1959, BIOCHEM J, V72, P3
[4]   THE UNIQUENESS OF PLANT-MITOCHONDRIA [J].
DOUCE, R ;
NEUBURGER, M .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1989, 40 :371-414
[5]   CHARACTERISTICS OF GLYCINE AND MALATE OXIDATION BY PEA LEAF MITOCHONDRIA - EVIDENCE OF DIFFERENTIAL ACCESS TO NAD AND RESPIRATORY CHAINS [J].
DRY, IB ;
WISKICH, JT .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1985, 12 (04) :329-339
[6]   PREFERENTIAL OXIDATION OF GLYCINE BY THE RESPIRATORY-CHAIN OF PEA LEAF MITOCHONDRIA [J].
DRY, IB ;
DAY, DA ;
WISKICH, JT .
FEBS LETTERS, 1983, 158 (01) :154-158
[7]   INFLUENCE OF PHOTORESPIRATION ON ATP/ADP RATIOS IN THE CHLOROPLASTS, MITOCHONDRIA, AND CYTOSOL, STUDIES BY RAPID FRACTIONATION OF BARLEY (HORDEUM-VULGARE) PROTOPLASTS [J].
GARDESTROM, P ;
WIGGE, B .
PLANT PHYSIOLOGY, 1988, 88 (01) :69-76
[8]  
GARDESTROM P, 1985, PLANT PHYSIOL, V71, P24
[9]   LIGHT REGULATION OF LEAF MITOCHONDRIAL PYRUVATE-DEHYDROGENASE COMPLEX - ROLE OF PHOTORESPIRATORY CARBON METABOLISM [J].
GEMEL, J ;
RANDALL, DD .
PLANT PHYSIOLOGY, 1992, 100 (02) :908-914
[10]  
HATCH MD, 1978, ANAL BIOCHEM, V85, P271, DOI 10.1016/0003-2697(78)90299-3