A note on preconditioning for indefinite linear systems

被引:427
作者
Murphy, MF
Golub, GH
Wathen, AJ
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
indefinite matrices; preconditioning;
D O I
10.1137/S1064827599355153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Preconditioners are often conceived as approximate inverses. For nonsingular indefinite matrices of saddle-point (or KKT) form, we show how preconditioners incorporating an exact Schur complement lead to preconditioned matrices with exactly two or exactly three distinct eigenvalues. Thus approximations of the Schur complement lead to preconditioners which can be very effective even though they are in no sense approximate inverses.
引用
收藏
页码:1969 / 1972
页数:4
相关论文
共 14 条
[1]  
Boggs P.T., 2008, ACTA NUMER, V4, P1, DOI [DOI 10.1017/S0962492900002518, 10.1017/s0962492900002518]
[2]  
BREZZI F, 1987, P INT C MATH 1986, P1335
[3]  
ELMAN EHC, 1997, ITERATIVE METHODS SC, P271
[4]   Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations [J].
Elman, H ;
Silvester, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01) :33-46
[5]   INEXACT AND PRECONDITIONED UZAWA ALGORITHMS FOR SADDLE-POINT PROBLEMS [J].
ELMAN, HC ;
GOLUB, GH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (06) :1645-1661
[6]  
FREUND R, 1992, ACTA NUMERICA, P57
[7]   PRECONDITIONERS FOR INDEFINITE SYSTEMS ARISING IN OPTIMIZATION [J].
GILL, PE ;
MURRAY, W ;
PONCELEON, DB ;
SAUNDERS, MA .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) :292-311
[8]  
HEMMINGSSON L, 1999, UNPUB NUMER LINEAR A
[9]  
Maryska J, 1996, NUMER LINEAR ALGEBR, V3, P525, DOI 10.1002/(SICI)1099-1506(199611/12)3:6<525::AID-NLA94>3.0.CO
[10]  
2-X