Renormalization and knot theory

被引:28
作者
Kreimer, D [1 ]
机构
[1] UNIV TASMANIA, HOBART, TAS 7001, AUSTRALIA
关键词
D O I
10.1142/S0218216597000315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate to what extent renormalization can be understood as an algebraic manipulation on concatenated one-loop integrals. We find that the resulting algebra indicates a useful connection to knot theory as well as number theory and report on recent results in support of this connection.
引用
收藏
页码:479 / 581
页数:103
相关论文
共 54 条
[1]  
Adams C. C., 1994, KNOT BOOK
[2]  
[Anonymous], METHODS FIELD THEORY
[3]   Z2 X S6 SYMMETRY OF THE 2-LOOP DIAGRAM [J].
BARFOOT, DT ;
BROADHURST, DJ .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1988, 41 (01) :81-85
[4]   CALCULATION OF LADDER DIAGRAMS IN ARBITRARY ORDER [J].
BELOKUROV, VV ;
USSYUKINA, NI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (12) :2811-2816
[5]  
Bogoliubov N.N., 1980, Introduction to theory of quantized fields
[6]   EXPLICIT EVALUATION OF EULER SUMS [J].
BORWEIN, D ;
BORWEIN, JM ;
GIRGENSOHN, R .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 :277-294
[7]  
BORWEIN J. M., 1996, Electron. J. Combin., V3, pR23
[8]  
Broadhurst D. J, 1985, OUT410218 OP U
[9]  
Broadhurst D. J., HEPTH9612012
[10]   Unknotting the polarized vacuum of quenched QED [J].
Broadhurst, DJ ;
Delbourgo, R ;
Kreimer, D .
PHYSICS LETTERS B, 1996, 366 (1-4) :421-428