Electrophysiological consequences of human IKs channel expression in adult murine heart

被引:12
作者
Tracy, CC
Cabo, C
Coromilas, J
Kurokawa, J
Kass, RS
Wit, AL
机构
[1] Columbia Univ Coll Phys & Surg, Dept Pharmacol, New York, NY 10032 USA
[2] Columbia Univ Coll Phys & Surg, Dept Med, New York, NY 10032 USA
[3] Columbia Univ Coll Phys & Surg, Ctr Mol Therapeut, New York, NY 10032 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 2003年 / 284卷 / 01期
关键词
arrhythmia; beta-adrenergic; repolarization; heart rate; delayed rectifier K+ cardiac current;
D O I
10.1152/ajpheart.00661.2002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We expressed human delayed rectifier K+ cardiac current (I-Ks) channels in the murine heart, which lacks native I-Ks, to determine their electrophysiological role. Mice expressing human I-Ks channels were anesthetized, and an electrocardiogram and monophasic action potentials (MAP) recorded from the left ventricle. Sinus rate was not different between wildtype mice (WT) and transgenic mice (TG). Infusion of isoproterenol accelerated WT heart rate but not TG. Lack of TG sinus rate responsiveness may have resulted from accumulated outward current in I-Ks channels in sinus node. Ventricular MAP duration of TG mice to 50% repolarization (APD(50)) during ventricular pacing was shorter than WT, likely resulting from outward current through I-Ks channels. TG APD(50) showed enhanced responsiveness (shortening) to isoproterenol compared with WT. Ventricular tachyarrhythmias were initiated in TG mice by programmed stimulation but not in WT and were accelerated by isoproterenol. I-Ks channels impart beta-adrenergic sensitivity to the ventricles and may be responsible for ventricular tachyarrhythmias.
引用
收藏
页码:H168 / H175
页数:8
相关论文
共 50 条
[1]   CIRCUS MOVEMENT IN RABBIT ATRIAL MUSCLE AS A MECHANISM OF TACHYCARDIA .3. LEADING CIRCLE CONCEPT - NEW MODEL OF CIRCUS MOVEMENT IN CARDIAC TISSUE WITHOUT INVOLVEMENT OF AN ANATOMICAL OBSTACLE [J].
ALLESSIE, MA ;
BONKE, FIM ;
SCHOPMAN, FJG .
CIRCULATION RESEARCH, 1977, 41 (01) :9-18
[2]   Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia [J].
Baker, LC ;
London, B ;
Choi, BR ;
Koren, G ;
Salama, G .
CIRCULATION RESEARCH, 2000, 86 (04) :396-407
[3]   K(v)LQT1 and IsK (minK) proteins associate to form the I-Ks cardiac potassium current [J].
Barhanin, J ;
Lesage, F ;
Guillemare, E ;
Fink, M ;
Lazdunski, M ;
Romey, G .
NATURE, 1996, 384 (6604) :78-80
[4]   Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 α subunit [J].
Barry, DM ;
Xu, HD ;
Schuessler, RB ;
Nerbonne, JM .
CIRCULATION RESEARCH, 1998, 83 (05) :560-567
[5]   The sinoatrial node, a heterogeneous pacemaker structure [J].
Boyett, MR ;
Honjo, H ;
Kodama, I .
CARDIOVASCULAR RESEARCH, 2000, 47 (04) :658-687
[6]   STUDY OF THE FACTORS RESPONSIBLE FOR RATE-DEPENDENT SHORTENING OF THE ACTION POTENTIAL IN MAMMALIAN VENTRICULAR MUSCLE [J].
BOYETT, MR ;
JEWELL, BR .
JOURNAL OF PHYSIOLOGY-LONDON, 1978, 285 (DEC) :359-380
[7]   Inhibition of I-Ks in guinea pig cardiac myocytes and guinea pig I-sK channels by the chromanol 293B [J].
Busch, AE ;
Suessbrich, H ;
Waldegger, S ;
Sailer, E ;
Greger, R ;
Lang, HJ ;
Lang, F ;
Gibson, KJ ;
Maylie, JG .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1996, 432 (06) :1094-1096
[8]   IONIC CURRENT MECHANISMS GENERATING VERTEBRATE PRIMARY CARDIAC-PACEMAKER ACTIVITY AT THE SINGLE CELL LEVEL - AN INTEGRATIVE VIEW [J].
CAMPBELL, DL ;
RASMUSSON, RL ;
STRAUSS, HC .
ANNUAL REVIEW OF PHYSIOLOGY, 1992, 54 :279-302
[9]   Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome [J].
Casimiro, MC ;
Knollmann, BC ;
Ebert, SN ;
Vary, JC ;
Greene, AE ;
Franz, MR ;
Grinberg, A ;
Huang, SP ;
Pfeifer, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2526-2531
[10]  
CERBAI E, 2000, CARDIAC ELECTROPHYSI, P167