Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements

被引:124
作者
Bright, Ido [1 ]
Lin, Guang [2 ]
Kutz, J. Nathan [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Pacific NW Natl Lab, Richland, WA 99352 USA
基金
美国国家科学基金会;
关键词
PROPER-ORTHOGONAL-DECOMPOSITION; SIGNAL RECOVERY; MODEL; VORTEX;
D O I
10.1063/1.4836815
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L-1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L-2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L-1 norm. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:15
相关论文
共 42 条
[1]   Statistical field estimation for complex coastal regions and archipelagos [J].
Agarwal, Arpit ;
Lermusiaux, Pierre F. J. .
OCEAN MODELLING, 2011, 40 (02) :164-189
[2]   Energy harvesting eel [J].
Allen, JJ ;
Smits, AJ .
JOURNAL OF FLUIDS AND STRUCTURES, 2001, 15 (3-4) :629-640
[3]  
[Anonymous], 1928, Transactions of the American Institute of Electrical Engineers, DOI DOI 10.1109/T-AIEE.1928.5055024
[4]  
[Anonymous], 2005, SPECTRALHP ELEMENT M
[5]   IEEE-SPS and connexions - An open access education collaboration [J].
Baraniuk, Richard G. ;
Burrus, C. Sidney ;
Thierstein, E. Joel .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) :6-+
[6]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[7]   Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model [J].
Bergmann, M ;
Cordier, L ;
Brancher, JP .
PHYSICS OF FLUIDS, 2005, 17 (09) :1-21
[8]   THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS [J].
BERKOOZ, G ;
HOLMES, P ;
LUMLEY, JL .
ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 :539-575
[9]   Spanwise flow and the attachment of the leading-edge vortex on insect wings [J].
Birch, JM ;
Dickinson, MH .
NATURE, 2001, 412 (6848) :729-733
[10]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509