The potential toxicity of nanomaterials - The role of surfaces

被引:176
作者
Karakoti, A. S.
Hench, L. L.
Seal, S. [1 ]
机构
[1] Univ Cent Florida, Surface Engn & Nanotechnol Facil, Adv Mat Proc & Anal Ctr, Mech Mat & Aerosp Engn Nanosci & Technol Ctr, Orlando, FL 32816 USA
[2] Univ Cent Florida, Orlando, FL 32816 USA
[3] Imperial Coll Sci Technol & Med, London, England
基金
美国国家科学基金会;
关键词
D O I
10.1007/s11837-006-0147-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanotechnology has attracted considerable attention in the scientific community ever since its emergence as a powerful basic and applied science tool. While beneficial aspects of nanomaterials are well visioned, several reports have suggested the negative impact of nanomaterials on living cells. The diverse array of surface properties achieved due to reduction in particle size that catalyzes the surface chemistry of nanoparticles is responsible for their toxic potential. Physical parameters such as surface area, particle size, surface charge, and zeta potential are very important for providing mechanistic details in the uptake, persistence, and biological toxicity, of nanoparticles inside living cells. This short review provides insights into the physical, chemical, and interfacial parameters on the toxic potential of nanomaterials. While nanotechnology has promised invaluable progress in science and technology, the onus rests on the scientific community to predict the unknown outcome on the biological system for its safe proliferation.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 39 条
[1]   Noninvasive imaging of quantum dots in mice [J].
Ballou, B ;
Lagerholm, BC ;
Ernst, LA ;
Bruchez, MP ;
Waggoner, AS .
BIOCONJUGATE CHEMISTRY, 2004, 15 (01) :79-86
[2]   Interfacial approach to aluminum toxicity:: Interactions of Al(III) and Pr(III) with model phospholipid bilayer and monolayer membranes [J].
Caël, V ;
Van der Heyden, A ;
Champmartin, D ;
Barzyk, W ;
Rubini, P ;
Rogalska, E .
LANGMUIR, 2003, 19 (21) :8697-8708
[3]   Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast [J].
Ding, LH ;
Stilwell, J ;
Zhang, TT ;
Elboudwarej, O ;
Jiang, HJ ;
Selegue, JP ;
Cooke, PA ;
Gray, JW ;
Chen, FQF .
NANO LETTERS, 2005, 5 (12) :2448-2464
[4]   Nanotoxicology [J].
Donaldson, K ;
Stone, V ;
Tran, CL ;
Kreyling, W ;
Borm, PJA .
OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2004, 61 (09) :727-728
[5]   Inflammation caused by particles and fibers [J].
Donaldson, K ;
Tran, CL .
INHALATION TOXICOLOGY, 2002, 14 (01) :5-27
[6]   Ultrafine particles [J].
Donaldson, K ;
Stone, V ;
Clouter, A ;
Renwick, L ;
MacNee, W .
OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2001, 58 (03) :211-+
[7]   Toxicity and biocompatibility of carbon nanoparticles [J].
Fiorito, S ;
Serafino, A ;
Andreola, F ;
Togna, A ;
Togna, G .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (03) :591-599
[8]   Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells [J].
Gurr, JR ;
Wang, ASS ;
Chen, CH ;
Jan, KY .
TOXICOLOGY, 2005, 213 (1-2) :66-73
[9]   Environmental risks of nanotechnology:: National nanotechnology initiative funding, 2000-2004 [J].
Guzmán, KAD ;
Taylor, MR ;
Banfield, JF .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (05) :1401-1407
[10]  
HALLIWEL B, 1999, FREE RADICALS BIOL M