On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction

被引:635
作者
Fukunishi, H
Watanabe, O
Takada, S [1 ]
机构
[1] Kobe Univ, Fac Sci, Dept Chem, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Japan Sci & Technol, PRESTO, Nada Ku, Kobe, Hyogo 6578501, Japan
[3] Kobe Univ, Grad Sch Sci & Technol, Nada Ku, Kobe, Hyogo 6578501, Japan
关键词
D O I
10.1063/1.1472510
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Motivated by the protein structure prediction problem, we develop two variants of the Hamiltonian replica exchange methods (REMs) for efficient configuration sampling, (1) the scaled hydrophobicity REM and (2) the phantom chain REM, and compare their performance with the ordinary REM. We first point out that the ordinary REM has a shortage for the application to large systems such as biomolecules and that the Hamiltonian REM, an alternative formulation of the REM, can give a remedy for it. We then propose two examples of the Hamiltonian REM that are suitable for a coarse-grained protein model. (1) The scaled hydrophobicity REM prepares replicas that are characterized by various strengths of hydrophobic interaction. The strongest interaction that mimics aqueous solution environment makes proteins folding, while weakened hydrophobicity unfolds proteins as in organic solvent. Exchange between these environments enables proteins to escape from misfolded traps and accelerate conformational search. This resembles the roles of molecular chaperone that assist proteins to fold in vivo. (2) The phantom chain REM uses replicas that allow various degrees of atomic overlaps. By allowing atomic overlap in some of replicas, the peptide chain can cross over itself, which can accelerate conformation sampling. Using a coarse-gained model we developed, we compute equilibrium probability distributions for poly-alanine 16-mer and for a small protein by these REMs and compare the accuracy of the results. We see that the scaled hydrophobicity REM is the most efficient method among the three REMs studied. (C) 2002 American Institute of Physics.
引用
收藏
页码:9058 / 9067
页数:10
相关论文
共 47 条
[1]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[2]   Protein structure prediction and structural genomics [J].
Baker, D ;
Sali, A .
SCIENCE, 2001, 294 (5540) :93-96
[3]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[4]   Ab initio protein structure prediction: Progress and prospects [J].
Bonneau, R ;
Baker, D .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2001, 30 :173-189
[5]   CALCULATION OF PROTEIN CONFORMATIONS BY PROTON PROTON DISTANCE CONSTRAINTS - A NEW EFFICIENT ALGORITHM [J].
BRAUN, W ;
GO, N .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 186 (03) :611-626
[6]   Multi-self-overlap ensemble for protein folding: Ground state search and thermodynamics [J].
Chikenji, G ;
Kikuchi, M ;
Iba, Y .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1886-1889
[7]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[8]   OPTIMIZED MONTE-CARLO DATA-ANALYSIS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1195-1198
[9]   NEW MONTE-CARLO TECHNIQUE FOR STUDYING PHASE-TRANSITIONS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1988, 61 (23) :2635-2638
[10]   Comparison of three Monte Carlo conformational search strategies for a proteinlike homopolymer model: Folding thermodynamics and identification of low-energy structures [J].
Gront, D ;
Kolinski, A ;
Skolnick, J .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (12) :5065-5071