Finite-size effects and error-free communication in Gaussian channels

被引:16
作者
Kanter, I [1 ]
Saad, D
机构
[1] Bar Ilan Univ, Minerva Ctr, IL-52900 Ramat Gan, Israel
[2] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[3] Aston Univ, Neural Comp Res Grp, Birmingham B4 7ET, W Midlands, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 08期
关键词
D O I
10.1088/0305-4470/33/8/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The efficacy of st specially constructed Gallager-type, error-correcting code to communication in a Gaussian channel is examined. The construction is based on the introduction of complex matrices, used in bath encoding and decoding, which comprise sub-matrices of cascading connection values. The finite-size effects are estimated for comparing the results with the bounds set by Shannon. The critical noise level achieved for certain code rates and infinitely large systems nearly saturates the bounds set by Shannon even when the connectivity used is low.
引用
收藏
页码:1675 / 1681
页数:7
相关论文
共 22 条
[1]  
[Anonymous], 1963, RES MONOGRAPH SERIES
[2]  
[Anonymous], 1985, ERROR CONTROL TECHNI
[3]  
BERROU C, 1993, P 1993 IEEE INT C CO, V1064
[4]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[5]  
DISVILAR D, 1995, 42 JPL TDA
[6]  
Frey B. J., 1998, ADAP COMP MACH LEARN
[7]   LOW-DENSITY PARITY-CHECK CODES [J].
GALLAGER, RG .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (01) :21-&
[8]   Statistical mechanics of error-correcting codes [J].
Kabashima, Y ;
Saad, D .
EUROPHYSICS LETTERS, 1999, 45 (01) :97-103
[9]   Typical performance of Gallager-type error-correcting codes [J].
Kabashima, Y ;
Murayama, T ;
Saad, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (06) :1355-1358
[10]   MEAN-FIELD THEORY OF SPIN-GLASSES WITH FINITE COORDINATION-NUMBER [J].
KANTER, I ;
SOMPOLINSKY, H .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :164-167