Problems which are well posed in a generalized sense with applications to the Einstein equations

被引:51
作者
Kreiss, H-O [1 ]
Winicour, J.
机构
[1] Royal Inst Technol, NADA, S-10044 Stockholm, Sweden
[2] Max Planck Inst Gesell, Albert Einstein Inst, D-14476 Golm, Germany
[3] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/23/16/S07
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the harmonic description of general relativity, the principal part of the Einstein equations reduces to a constrained system of ten curved space wave equations for the components of the spacetime metric. We use the pseudo-differential theory of systems which are strongly well posed in the generalized sense to establish the well posedness of constraint-preserving boundary conditions for this system when treated in a second-order differential form. The boundary conditions are of a generalized Sommerfeld type that is benevolent for numerical calculation.
引用
收藏
页码:S405 / S420
页数:16
相关论文
共 18 条
[1]  
Agranovich M.S., 1972, FUNCT ANAL APPL, V6, P85
[2]  
Babiuc M, 2006, LECT NOTES PHYS, V692, P251, DOI 10.1007/3-540-33484-X_12
[3]  
BABIUC MC, 2006, CLASSICAL QUANT GRAV, V23, pS321
[4]   *THEOREME DEXISTENCE POUR CERTAINS SYSTEMES DEQUATIONS AUX DERIVEES PARTIELLES NON LINEAIRES [J].
FOURESBRUHAT, Y .
ACTA MATHEMATICA, 1952, 88 (03) :141-225
[5]   The initial boundary value problem for Einstein's vacuum field equation [J].
Friedrich, H ;
Nagy, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :619-655
[6]  
Gustafsson B., 1995, TIME DEPENDENT PROBL, Vsecond
[7]  
Kreiss H., 1989, INITIAL BOUNDARY VAL
[8]  
Kreiss HO, 2002, LECT NOTES PHYS, V604, P359
[9]   INITIAL BOUNDARY VALUE PROBLEMS FOR HYPERBOLIC SYSTEMS [J].
KREISS, HO .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1970, 23 (03) :277-&
[10]   INITIAL-BOUNDARY VALUE-PROBLEMS FOR HYPERBOLIC EQUATIONS WITH UNIFORMLY CHARACTERISTIC BOUNDARY [J].
MAJDA, A ;
OSHER, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (05) :607-675