On first passage times of a hyper-exponential jump diffusion process

被引:54
作者
Cai, Ning [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Ind Engn Logist Management, Kowloon, Hong Kong, Peoples R China
关键词
Jump diffusion; First passage times; Hyper-exponential distribution;
D O I
10.1016/j.orl.2009.01.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate some important probabilistic properties relating to the first passage time of a hyper-exponential jump diffusion process, including its finiteness, expectation, conditional memorylessness, and conditional independence. Moreover. the joint distribution of the first passage time and the overshoot is studied from a primal-dual perspective. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 10 条
[1]   Russian and American put options under exponential phase-type Levy models [J].
Asmussen, S ;
Avram, F ;
Pistorius, MR .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (01) :79-111
[2]  
Bertoin J., 1996, Levy Processes
[3]  
Cai N., 2007, OPTION PRICING HYPER
[4]  
Cont R., 2004, Financial modelling with jump processes
[5]  
Kou S.G., 2005, KYOTO ECNOMIC REV, V74, P1
[6]   First passage times of a jump diffusion process [J].
Kou, SG ;
Wang, H .
ADVANCES IN APPLIED PROBABILITY, 2003, 35 (02) :504-531
[7]   A jump-diffusion model for option pricing [J].
Kou, SG .
MANAGEMENT SCIENCE, 2002, 48 (08) :1086-1101
[8]   OPTION PRICING WHEN UNDERLYING STOCK RETURNS ARE DISCONTINUOUS [J].
MERTON, RC .
JOURNAL OF FINANCIAL ECONOMICS, 1976, 3 (1-2) :125-144
[9]  
SATO K., 2013, Cambridge Studies in Advanced Mathematics, V68
[10]  
Shreve SE., 2004, STOCHASTIC CALCULUS