Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne

被引:40
作者
Ciannamea, Stefano
Kaufmann, Kerstin
Frau, Marta
Tonaco, Isabella A. Nougalli
Petersen, Klaus
Nielsen, Klaus K.
Angenent, Gerco C.
Immink, Richard G. H.
机构
[1] Plant Res Int, Business Unit Biosci, NL-6708 PD Wageningen, Netherlands
[2] Riso Natl Lab, Biosyst Dept, DK-4000 Roskilde, Denmark
[3] DLF, TRIFOLIUM, DK-4660 Store Heddinge, Denmark
关键词
Lolium; MADS box transcription factor; protein-protein interaction; vernalization;
D O I
10.1093/jxb/erl144
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Regulation of flowering time is best understood in the dicot model species Arabidopsis thaliana. Molecular analyses revealed that genes belonging to the MADS box transcription factor family play pivotal regulatory roles in both the vernalization- and photoperiod-regulated flowering pathways. Here the analysis of three APETALA1 (AP1)-like MADS box proteins (LpMADS1-3) and a SHORT VEGETATIVE PHASE (SVP)-like MADS box protein (LpMADS10) from the monocot perennial grass species Lolium perenne is reported. Features of these MADS box proteins were studied by yeast two-hybrid assays. Protein-protein interactions among the Lolium proteins and with members of the Arabidopsis MADS box family have been studied. The expression pattern for LpMADS1 and the protein properties suggest that not the Arabidopsis AP1 gene, but the SUPPRESSOR OF CONSTANS1 (SOC1) gene, is the functional equivalent of LpMADS1. To obtain insight into the molecular mechanism underlying the regulation of LpMADS1 gene expression in vernalization-sensitive and -insensitive Lolium accessions, the upstream sequences of this gene from a winter and spring growth habit variety were compared with respect to MADS box protein binding. In both promoter elements, a putative MADS box transcription factor-binding site (CArG-box) is present; however, the putative spring promoter has a short deletion adjacent to this DNA motif. Experiments using yeast one-hybrid and gel retardation assays demonstrated that the promoter element is bound by an LpMADS1-LpMADS10 higher order protein complex and, furthermore, that this complex binds efficiently to the promoter element from the winter variety only. This strongly supports the model that LpMADS1 together with LpMADS10 controls the vernalization-dependent regulation of the LpMADS1 gene, which is part of the vernalization-induced flowering process in Lolium.
引用
收藏
页码:3419 / 3431
页数:13
相关论文
共 61 条
[1]   Similar genetic switch systems might integrate the floral inductive pathways in dicots and monocots [J].
Andersen, CH ;
Jensen, CS ;
Petersen, K .
TRENDS IN PLANT SCIENCE, 2004, 9 (03) :105-107
[2]   A MADS domain gene involved in the transition to flowering in Arabidopsis [J].
Borner, R ;
Kampmann, G ;
Chandler, J ;
Gleissner, R ;
Wisman, E ;
Apel, K ;
Melzer, S .
PLANT JOURNAL, 2000, 24 (05) :591-599
[3]   GENES CONFERRING LATE FLOWERING IN ARABIDOPSIS-THALIANA [J].
BURN, JE ;
SMYTH, DR ;
PEACOCK, WJ ;
DENNIS, ES .
GENETICA, 1993, 90 (2-3) :147-155
[4]   Evolution in action: Following function in duplicated floral homeotic genes [J].
Causier, B ;
Castillo, R ;
Zhou, JL ;
Ingram, R ;
Xue, YB ;
Schwarz-Sommer, Z ;
Davies, B .
CURRENT BIOLOGY, 2005, 15 (16) :1508-1512
[5]   Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach [J].
Ciannamea, S ;
Busscher-Lange, J ;
de Folter, S ;
Angenent, GC ;
Immink, RGH .
PLANT AND CELL PHYSIOLOGY, 2006, 47 (04) :481-492
[6]   MAPPING FRI, A LOCUS CONTROLLING FLOWERING TIME AND VERNALIZATION RESPONSE IN ARABIDOPSIS-THALIANA [J].
CLARKE, JH ;
DEAN, C .
MOLECULAR & GENERAL GENETICS, 1994, 242 (01) :81-89
[7]   TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals [J].
Danyluk, J ;
Kane, NA ;
Breton, G ;
Limin, AE ;
Fowler, DB ;
Sarhan, F .
PLANT PHYSIOLOGY, 2003, 132 (04) :1849-1860
[8]   Comprehensive interaction map of the Arabidopsis MADS box transcription factors [J].
de Folter, S ;
Immink, RGH ;
Kieffer, M ;
Parenicová, L ;
Henz, SR ;
Weigel, D ;
Busscher, M ;
Kooiker, M ;
Colombo, L ;
Kater, MM ;
Davies, B ;
Angenent, GC .
PLANT CELL, 2005, 17 (05) :1424-1433
[9]   Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus [J].
Egea-Cortines, M ;
Saedler, H ;
Sommer, H .
EMBO JOURNAL, 1999, 18 (19) :5370-5379
[10]   MADS-box protein complexes control carpel and ovule development in Arabidopsis [J].
Favaro, R ;
Pinyopich, A ;
Battaglia, R ;
Kooiker, M ;
Borghi, L ;
Ditta, G ;
Yanofsky, MF ;
Kater, MM ;
Colombo, L .
PLANT CELL, 2003, 15 (11) :2603-2611