Deformation of spherical CR structures and the universal Picard variety

被引:9
作者
Cheng, JH [1 ]
Tsai, IH
机构
[1] Acad Sinica, Taipei 115, Taiwan
[2] Natl Taiwan Univ, Taipei 10764, Taiwan
关键词
D O I
10.4310/CAG.2000.v8.n2.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study deformations of a spherical CR circle bundle over a Riemann surface of genus > 1. Roughly speaking, there is a diffeomorphism between such a deformation space and the unramified universal Picard variety. On the way to the latter, are actually give a differential-geometric proof of the structure and dimension of the unramified universal Picard variety.
引用
收藏
页码:301 / 346
页数:46
相关论文
共 39 条
[1]  
[Anonymous], 1978, J DIFFER GEOM
[2]  
[Anonymous], GEOMETRY RIEMANN SUR
[3]  
AUBIN T, 1982, GMW, V252
[4]  
Bland J., GROUP CONTACT DIFFEO
[5]   SPHERICAL HYPERSURFACES IN COMPLEX MANIFOLDS [J].
BURNS, D ;
SHNIDER, S .
INVENTIONES MATHEMATICAE, 1976, 33 (03) :223-246
[6]  
Caporaso L., 1994, J AM MATH SOC, V7, P589
[7]  
CARTAN E, OEUVRES, V2, P1231
[8]   THE BURNS-EPSTEIN INVARIANT AND DEFORMATION OF CR STRUCTURES [J].
CHENG, JH ;
LEE, JM .
DUKE MATHEMATICAL JOURNAL, 1990, 60 (01) :221-254
[9]   A LOCAL SLICE THEOREM FOR 3-DIMENSIONAL CR STRUCTURES [J].
CHENG, JH ;
LEE, JM .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (05) :1249-1298
[10]  
CHERN SS, LECT NOTES, V1111, P279