Integral equation theory of polydisperse colloidal suspensions using orthogonal polynomial expansions

被引:32
作者
Lado, F
机构
[1] Department of Physics, North Carolina State University, Raleigh, NC
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 04期
关键词
D O I
10.1103/PhysRevE.54.4411
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A procedure is described for the calculation of the generalized pair distribution function g(r,sigma,sigma'), where sigma is a molecular random variable with distribution f(sigma), using generalized integral equations familiar from simple liquid theory. The method is based on expansions of all sigma-dependent functions in the orthogonal polynomials p(j)(sigma) associated with the weight f(sigma) and is computationally efficient. To illustrate the procedure, calculations are made for a charge-stabilized, polydisperse colloidal suspension with Schulz distribution of diameters sigma. The method can be immediately generalized to fluids with internal degrees of freedom, for which f(sigma) must itself be self-consistently determined.
引用
收藏
页码:4411 / 4419
页数:9
相关论文
共 22 条
[1]  
AKHIEZER NI, 1965, CLASSICAL MOMENT PRO, P22
[2]  
ARFKEN G, 1985, MATH METHODS PHYSICI
[3]   POLYDISPERSE SYSTEMS .1. SCATTERING FUNCTION FOR POLYDISPERSE FLUIDS OF HARD OR PERMEABLE SPHERES [J].
BLUM, L ;
STELL, G .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (01) :42-46
[4]   CORRECTION [J].
BLUM, L .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (03) :2212-2212
[5]   INTEGRAL-EQUATION THEORY OF POLYDISPERSE YUKAWA SYSTEMS [J].
DAGUANNO, B ;
KLEIN, R .
PHYSICAL REVIEW A, 1992, 46 (12) :7652-7656
[6]   STRUCTURAL EFFECTS OF POLYDISPERSITY IN CHARGED COLLOIDAL DISPERSIONS [J].
DAGUANNO, B ;
KLEIN, R .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1991, 87 (03) :379-390
[7]  
DAGUANNO B, 1993, COMPLEX FLUIDS
[8]  
DAGUANNO B, COMMUNICATION
[9]   ANALYTICAL SCATTERING FUNCTION OF A POLYDISPERSE PERCUS-YEVICK FLUID WITH SCHULZ-(GAMMA-) DISTRIBUTED DIAMETERS [J].
GRIFFITH, WL ;
TRIOLO, R ;
COMPERE, AL .
PHYSICAL REVIEW A, 1987, 35 (05) :2200-2206
[10]  
Hansen J P., 2013, Theory of Simple Liquids: With Applications to Soft Matter