The origin of the electrostatic perturbation in acetoacetate decarboxylase

被引:82
作者
Ho, Meng-Chiao [1 ]
Menetret, Jean-Francois [1 ]
Tsuruta, Hiro [2 ]
Allen, Karen N. [1 ]
机构
[1] Boston Univ, Sch Med, Dept Physiol & Biophys, Boston, MA 02118 USA
[2] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ACTIVE-SITE; ENZYMATIC DECARBOXYLATION; MECHANISM; SOFTWARE; LYSINE; RESOLUTION; SYSTEM; PK(A); MODEL;
D O I
10.1038/nature07938
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acetoacetate decarboxylase (AADase) has long been cited as the prototypical example of the marked shifts in the pK(a) values of ionizable groups that can occur in an enzyme active site. In 1966, it was hypothesized that in AADase the origin of the large pK(a) perturbation (-4.5 log units) observed in the nucleophilic Lys 115 results from the proximity of Lys 116, marking the first proposal of microenvironment effects in enzymology. The electrostatic perturbation hypothesis has been demonstrated in a number of enzymes, but never for the enzyme that inspired its conception, owing to the lack of a three-dimensional structure. Here we present the X-ray crystal structures of AADase and of the enamine adduct with the substrate analogue 2,4-pentanedione. Surprisingly, the shift of the pK(a) of Lys 115 is not due to the proximity of Lys 116, the side chain of which is oriented away from the active site. Instead, Lys 116 participates in the structural anchoring of Lys 115 in a long, hydrophobic funnel provided by the novel fold of the enzyme. Thus, AADase perturbs the pK(a) of the nucleophile by means of a desolvation effect by placement of the side chain into the protein core while enforcing the proximity of polar residues, which facilitate decarboxylation through electrostatic and steric effects.
引用
收藏
页码:393 / U107
页数:7
相关论文
共 39 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   Immune versus natural selection: Antibody aldolases with enzymic rates but broader scope [J].
Barbas, CF ;
Heine, A ;
Zhong, GF ;
Hoffmann, T ;
Gramatikova, S ;
Bjornestedt, R ;
List, B ;
Anderson, J ;
Stura, EA ;
Wilson, IA ;
Lerner, RA .
SCIENCE, 1997, 278 (5346) :2085-2092
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   MECHANISMS OF THIAMINE-CATALYZED REACTIONS - DECARBOXYLATION OF 2-(1-CARBOXY-1-HYDROXYETHYL)-3,4-DIMETHYLTHIAZOLIUM CHLORIDE [J].
CROSBY, J ;
STONE, R ;
LIENHARD, GE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1970, 92 (09) :2891-&
[5]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[6]  
FRIDOVICH I, 1968, J BIOL CHEM, V243, P1043
[7]   ON MECHANISM OF ENZYMATIC DECARBOXYLATION OF ACETOACETATE .2. [J].
FRIDOVICH, I ;
WESTHEIMER, FH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1962, 84 (16) :3208-&
[8]   Cation-π interactions in structural biology [J].
Gallivan, JP ;
Dougherty, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (17) :9459-9464
[9]   Experimental measurement of the effective dielectric in the hydrophobic core of a protein [J].
GarciaMoreno, B ;
Dwyer, JJ ;
Gittis, AG ;
Lattman, EE ;
Spencer, DS ;
Stites, WE .
BIOPHYSICAL CHEMISTRY, 1997, 64 (1-3) :211-224
[10]  
Gerlt JA, 2007, NATURE, V447, P543, DOI 10.1038/447543a