MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes

被引:214
作者
Bastiani, Michele [1 ]
Liu, Libin [4 ]
Hill, Michelle M. [1 ]
Jedrychowski, Mark P. [4 ]
Nixon, Susan J. [1 ]
Lo, Harriet P. [1 ]
Abankwa, Daniel [1 ]
Luetterforst, Robert [1 ]
Fernandez-Rojo, Manuel [1 ]
Breen, Michael R. [4 ]
Gygi, Steven P. [5 ]
Vinten, Jorgen [6 ]
Walser, Piers J. [1 ]
North, Kathryn N. [3 ]
Hancock, John F. [1 ]
Pilch, Paul F. [4 ]
Parton, Robert G. [1 ,2 ]
机构
[1] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia
[3] Childrens Hosp Westmead, Inst Neuromuscular Res, Sydney, NSW 2145, Australia
[4] Boston Univ, Sch Med, Dept Biochem, Boston, MA 02118 USA
[5] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[6] Univ Copenhagen, Panum Inst, Dept Med Physiol, DK-2200 Copenhagen N, Denmark
关键词
TRANSCRIPT RELEASE FACTOR; DEPRIVATION-RESPONSE-GENE; DEVELOPING T-TUBULES; COILED-COIL PROTEIN; RNA-POLYMERASE-I; ADIPOCYTE CAVEOLAE; MEMBRANE DOMAINS; SERUM STARVATION; BINDING PROTEIN; FACTOR PTRF;
D O I
10.1083/jcb.200903053
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer-based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein.
引用
收藏
页码:1259 / 1273
页数:15
相关论文
共 57 条
[1]   Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes [J].
Aboulaich, N ;
Vainonen, JP ;
Strålfors, P ;
Vener, AV .
BIOCHEMICAL JOURNAL, 2004, 383 :237-248
[2]   IDENTIFICATION OF A NOVEL GENE ENCODING AN INSULIN-RESPONSIVE GLUCOSE TRANSPORTER PROTEIN [J].
BIRNBAUM, MJ .
CELL, 1989, 57 (02) :305-315
[3]   PURIFICATION AND CHARACTERIZATION OF A MAJOR PHOSPHATIDYLSERINE-BINDING PHOSPHOPROTEIN FROM HUMAN PLATELETS [J].
BURGENER, R ;
WOLF, M ;
GANZ, T ;
BAGGIOLINI, M .
BIOCHEMICAL JOURNAL, 1990, 269 (03) :729-734
[4]   Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle [J].
Capozza, F ;
Combs, TP ;
Cohen, AW ;
Cho, YR ;
Park, SY ;
Schubert, W ;
Williams, TM ;
Brasaemle, DL ;
Jelicks, LA ;
Scherer, PE ;
Kim, JK ;
Lisanti, MP .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2005, 288 (06) :C1317-C1331
[5]   Coincidence detection in phosphoinositide signaling [J].
Carlton, JG ;
Cullen, PJ .
TRENDS IN CELL BIOLOGY, 2005, 15 (10) :540-547
[6]   The transcriptional landscape of the mammalian genome [J].
Carninci, P ;
Kasukawa, T ;
Katayama, S ;
Gough, J ;
Frith, MC ;
Maeda, N ;
Oyama, R ;
Ravasi, T ;
Lenhard, B ;
Wells, C ;
Kodzius, R ;
Shimokawa, K ;
Bajic, VB ;
Brenner, SE ;
Batalov, S ;
Forrest, ARR ;
Zavolan, M ;
Davis, MJ ;
Wilming, LG ;
Aidinis, V ;
Allen, JE ;
Ambesi-Impiombato, X ;
Apweiler, R ;
Aturaliya, RN ;
Bailey, TL ;
Bansal, M ;
Baxter, L ;
Beisel, KW ;
Bersano, T ;
Bono, H ;
Chalk, AM ;
Chiu, KP ;
Choudhary, V ;
Christoffels, A ;
Clutterbuck, DR ;
Crowe, ML ;
Dalla, E ;
Dalrymple, BP ;
de Bono, B ;
Della Gatta, G ;
di Bernardo, D ;
Down, T ;
Engstrom, P ;
Fagiolini, M ;
Faulkner, G ;
Fletcher, CF ;
Fukushima, T ;
Furuno, M ;
Futaki, S ;
Gariboldi, M .
SCIENCE, 2005, 309 (5740) :1559-1563
[7]   Role of cholesterol in developing T-tubules: Analogous mechanisms for T-tubule and caveolae biogenesis [J].
Carozzi, AJ ;
Ikonen, E ;
Lindsay, MR ;
Parton, RG .
TRAFFIC, 2000, 1 (04) :326-341
[8]   Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids (Review) [J].
Cheng, ZJ ;
Singh, RD ;
Marks, DL ;
Pagano, RE .
MOLECULAR MEMBRANE BIOLOGY, 2006, 23 (01) :101-110
[9]   Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation [J].
Cohen, AW ;
Razani, B ;
Schubert, W ;
Williams, TM ;
Wang, XB ;
Iyengar, P ;
Brasaemle, DL ;
Scherer, PE ;
Lisanti, MP .
DIABETES, 2004, 53 (05) :1261-1270
[10]   Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice [J].
Drab, M ;
Verkade, P ;
Elger, M ;
Kasper, M ;
Lohn, M ;
Lauterbach, B ;
Menne, J ;
Lindschau, C ;
Mende, F ;
Luft, FC ;
Schedl, A ;
Haller, H ;
Kurzchalia, TV .
SCIENCE, 2001, 293 (5539) :2449-2452