You Should Use Regression to Detect Cells

被引:88
作者
Kainz, Philipp [1 ]
Urschler, Martin [2 ,3 ]
Schulter, Samuel [2 ]
Wohlhart, Paul [2 ]
Lepetit, Vincent [2 ]
机构
[1] Med Univ Graz, Inst Biophys, Graz, Austria
[2] Graz Univ Technol, BioTechMed, Inst Comp Graph & Vis, A-8010 Graz, Austria
[3] Ludwig Boltzmann Inst Clin Forens Imaging, Graz, Austria
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III | 2015年 / 9351卷
关键词
D O I
10.1007/978-3-319-24574-4_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated cell detection in histopathology images is a hard problem due to the large variance of cell shape and appearance. We show that cells can be detected reliably in images by predicting, for each pixel location, a monotonous function of the distance to the center of the closest cell. Cell centers can then be identified by extracting local extremums of the predicted values. This approach results in a very simple method, which is easy to implement. We show on two challenging microscopy image datasets that our approach outperforms state-of-the-art methods in terms of accuracy, reliability, and speed. We also introduce a new dataset that we will make publicly available.
引用
收藏
页码:276 / 283
页数:8
相关论文
共 18 条
[1]   ASSESSMENT OF CELLULARITY IN BONE-MARROW FRAGMENTS [J].
ALADHADH, AN ;
CAVILL, I .
JOURNAL OF CLINICAL PATHOLOGY, 1983, 36 (02) :176-179
[2]  
[Anonymous], 2014, CVPR
[3]  
Arteta C, 2012, LECT NOTES COMPUT SC, V7510, P348, DOI 10.1007/978-3-642-33415-3_43
[4]   Pop out many small structures from a very large microscopic image [J].
Bernardis, Elena ;
Yu, Stella X. .
MEDICAL IMAGE ANALYSIS, 2011, 15 (05) :690-707
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]  
Fiaschi L, 2012, INT C PATT RECOG, P2685
[7]  
Gurcan Metin N, 2009, IEEE Rev Biomed Eng, V2, P147, DOI 10.1109/RBME.2009.2034865
[8]  
Gurcan MN, 2010, LECT NOTES COMPUT SC, V6388, P226, DOI 10.1007/978-3-642-17711-8_23
[9]  
Kuse Manohar, 2011, J Pathol Inform, V2, pS2, DOI 10.4103/2153-3539.92028
[10]  
Lempitsky V., 2010, ADV NEURAL INFORM PR, V23, P1, DOI DOI 10.5555/2997189.2997337