Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle

被引:99
作者
Györke, S
Györke, I
Lukyanenko, V
Terentyev, D
Viatchenko-Karpinski, S
Wiesner, TF
机构
[1] Texas Tech Univ, Hlth Sci Ctr, Dept Physiol, Lubbock, TX 79430 USA
[2] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2002年 / 7卷
关键词
excitation-contraction coupling; ryanodine receptor; sarcoplasmic reticulum; review;
D O I
10.2741/gyorke
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The amount of Ca2+ released from the sarcoplasmic reticulum (SR) is a principal determinant of cardiac contractility. Normally, the SR Ca2+ stores are mobilized through the mechanism of Ca2+-induced Ca2+ release (CICR). In this process, Ca2+ enters the cell through plasmalemmal voltage-dependent Ca2+ channels to activate the Ca2+ release channels in the SR membrane. Consequently, the control of Ca2+ release by cytosolic Ca2+ has traditionally been the main focus of cardiac excitation-contraction (EC) coupling research. Evidence obtained recently suggests that SR Ca release is controlled not only by cytosolic Ca2+, but also by Ca2+ in the lumen of the SR. The presence of a luminal Ca2+ sensor regulating release of SR luminal Ca2+ potentially has profound implications for our understanding of EC coupling and intracellular Ca2+ cycling. Here we review evidence, obtained using in situ and in vitro approaches, in support of such a luminal Ca2+ sensor in cardiac muscle. We also discuss the role of control of Ca-2+ release channels by luminal Ca2+ in termination and stabilization of CICR, as well as in shaping the response of cardiac myocytes to various inotropic influences and diseased states such as Ca2+ overload and heart failure.
引用
收藏
页码:D1454 / D1463
页数:10
相关论文
共 83 条
[1]   RATE OF DIASTOLIC CA RELEASE FROM THE SARCOPLASMIC-RETICULUM OF INTACT RABBIT AND RAT VENTRICULAR MYOCYTES [J].
BASSANI, RA ;
BERS, DM .
BIOPHYSICAL JOURNAL, 1995, 68 (05) :2015-2022
[2]  
Bers D.M., 2001, Excitation-Contraction Coupling and Cardiac Contractile Force, V2th
[3]   Reverse excitation-contraction coupling:: Ca2+ ions as initiators of arrhythmias [J].
Boyden, PA ;
Ter Keurs, HEDJ .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2001, 12 (03) :382-385
[4]  
CAMPBELL KP, 1986, SARCOPLASMIC RETICUL, P65
[5]   LOCALIZATION AND PARTIAL CHARACTERIZATION OF THE OLIGOMERIC DISULFIDE-LINKED MOLECULAR-WEIGHT 95000 PROTEIN (TRIADIN) WHICH BINDS THE RYANODINE AND DIHYDROPYRIDINE RECEPTORS IN SKELETAL-MUSCLE TRIADIC VESICLES [J].
CASWELL, AH ;
BRANDT, NR ;
BRUNSCHWIG, JP ;
PURKERSON, S .
BIOCHEMISTRY, 1991, 30 (30) :7507-7513
[6]   Measurement of free Ca2+ in sarcoplasmic reticulum in perfused rabbit heart loaded with 1,2-bis(2-amino-5,6-difluorophenoxy)ethane-N,N,N',N'-tetraacetic acid by F-19 NMR [J].
Chen, W ;
Steenbergen, C ;
Levy, LA ;
Vance, J ;
London, RE ;
Murphy, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (13) :7398-7403
[7]  
Cheng H, 1996, AM J PHYSIOL-CELL PH, V270, pC148
[8]   Excitation-contraction coupling in heart: New insights from Ca2+ sparks [J].
Cheng, H ;
Lederer, MR ;
Xiao, RP ;
Gomez, AM ;
Zhou, YY ;
Ziman, B ;
Spurgeon, H ;
Lakatta, EG ;
Lederer, WJ .
CELL CALCIUM, 1996, 20 (02) :129-140
[9]   Evidence for Ca2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex [J].
Ching, LL ;
Williams, AJ ;
Sitsapesan, R .
CIRCULATION RESEARCH, 2000, 87 (03) :201-206
[10]   Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle [J].
Cui, Y ;
Galione, A ;
Terrar, DA .
BIOCHEMICAL JOURNAL, 1999, 342 :269-273