Hepatic nuclear factor 3 and nuclear factor 1 regulate 5-aminolevulinate synthase gene expression and are involved in insulin repression

被引:22
作者
Scassa, ME [1 ]
Guberman, AS [1 ]
Ceruti, JM [1 ]
Cánepa, ET [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Biol, Mol Biol Lab, RA-1428 Buenos Aires, DF, Argentina
关键词
D O I
10.1074/jbc.M401792200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although the negative regulation of gene expression by insulin has been widely studied, the transcription factors responsible for the insulin effect are still unknown. The purpose of this work was to explore the molecular mechanisms involved in the insulin repression of the 5-aminolevulinate synthase ( ALAS) gene. Deletion analysis of the 5'-regulatory region allowed us to identify an insulin-responsive region located at -459 to -354 bp. This fragment contains a highly homologous insulin-responsive (IRE) sequence. By transient transfection assays, we determined that hepatic nuclear factor 3 (HNF3) and nuclear factor 1 (NF1) are necessary for an appropriate expression of the ALAS gene. Insulin overrides the HNF3beta or HNF3beta plus NF1-mediated stimulation of ALAS transcriptional activity. Electrophoretic mobility shift assay and Southwestern blotting indicate that HNF3 binds to the ALAS promoter. Mutational analysis of this region revealed that IRE disruption abrogates insulin action, whereas mutation of the HNF3 element maintains hormone responsiveness. This dissociation between HNF3 binding and insulin action suggests that HNF3beta is not the sole physiologic mediator of insulin-induced transcriptional repression. Furthermore, Southwestern blotting assay shows that at least two polypeptides other than HNF3beta can bind to ALAS promoter and that this binding is dependent on the integrity of the IRE. We propose a model in which insulin exerts its negative effect through the disturbance of HNF3beta binding or transactivation potential, probably due to specific phosphorylation of this transcription factor by Akt. In this regard, results obtained from transfection experiments using kinase inhibitors support this hypothesis. Due to this event, NF1 would lose accessibility to the promoter. The posttranslational modification of HNF3 would allow the binding of a protein complex that recognizes the core IRE. These results provide a potential mechanism for the insulin-mediated repression of IRE-containing promoters.
引用
收藏
页码:28082 / 28092
页数:11
相关论文
共 63 条
[1]   Effects of diabetes mellitus on patients with acute intermittent porphyria [J].
Andersson, C ;
Bylesjö, I ;
Lithner, F .
JOURNAL OF INTERNAL MEDICINE, 1999, 245 (02) :193-197
[2]   A RAPID MICROPREPARATION TECHNIQUE FOR EXTRACTION OF DNA-BINDING PROTEINS FROM LIMITING NUMBERS OF MAMMALIAN-CELLS [J].
ANDREWS, NC ;
FALLER, DV .
NUCLEIC ACIDS RESEARCH, 1991, 19 (09) :2499-2499
[3]   Delineation of the insulin-responsive sequence in the rat cytosolic aspartate aminotransferase gene: binding sites for hepatocyte nuclear factor-3 and nuclear factor I [J].
Beurton, F ;
Bandyopadhyay, U ;
Dieumegard, B ;
Barouki, R ;
Aggerbeck, M .
BIOCHEMICAL JOURNAL, 1999, 343 :687-695
[4]   2 DIFFERENT GENES ENCODE DELTA-AMINOLEVULINATE SYNTHASE IN HUMANS - NUCLEOTIDE-SEQUENCES OF CDNAS FOR THE HOUSEKEEPING AND ERYTHROID GENES [J].
BISHOP, DF .
NUCLEIC ACIDS RESEARCH, 1990, 18 (23) :7187-7188
[5]   TREATMENT OF ACUTE INTERMITTENT PORPHYRIA WITH LEVULOSE [J].
BRODIE, MJ ;
MOORE, MR ;
THOMPSON, GG ;
GOLDBERG, A .
CLINICAL SCIENCE AND MOLECULAR MEDICINE, 1977, 53 (04) :365-371
[6]   Forkhead transcription factors: Key players in development and metabolism [J].
Carlsson, P ;
Mahlapuu, M .
DEVELOPMENTAL BIOLOGY, 2002, 250 (01) :1-23
[7]   HNF1 and/or HNF3 may contribute to the tissue specific expression of glucokinase gene [J].
Cha, JY ;
Kim, HI ;
Im, SS ;
Li, TZ ;
Ahn, YH .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2001, 33 (02) :59-63
[8]   Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin [J].
Chaya, D ;
Hayamizu, T ;
Bustin, M ;
Zaret, KS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (48) :44385-44389
[9]  
CHOMCZYNSKY P, 1987, ANAL BIOCHEM, V71, P341
[10]   Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4 [J].
Cirillo, LA ;
Lin, FR ;
Cuesta, I ;
Friedman, D ;
Jarnik, M ;
Zaret, KS .
MOLECULAR CELL, 2002, 9 (02) :279-289