A standard measure of risk and risk-value models

被引:80
作者
Jia, JM [1 ]
Dyer, JS [1 ]
机构
[1] UNIV TEXAS,GRAD SCH BUSINESS,DEPT MANAGEMENT SCI & INFORMAT SYST,AUSTIN,TX 78712
关键词
risk; utility theory; risk-value models; portfolio optimization;
D O I
10.1287/mnsc.42.12.1691
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we propose a standard measure of risk that is based on the converted expected utility of normalized lotteries with zero-expected values. This measure of risk has many desirable properties that characterize the notion of risk. It is very general and includes many previously proposed measures of risk as special cases. Moreover, our standard measure of risk provides a preference-based and unified method for risk studies. Since the standard measure of risk is compatible with the measure of expected utility, it can be used explicitly or implicitly in an expected utility model. Under a condition called risk independence, a decision could be made by explicitly trading off between risk and value, which offers an alternative representation of the expected utility model, named the standard risk-value model. Finally, we discuss some other applications of the standard measure of risk and extensions of our risk-value tradeoff framework for descriptive decision making.
引用
收藏
页码:1691 / 1705
页数:15
相关论文
共 42 条
[1]  
[Anonymous], RISK RETURN EQUILIBR
[2]  
[Anonymous], HUMAN JUDGMENT DECIS
[3]  
[Anonymous], 1988, Nonlinear Preference and Utility Theory
[4]  
[Anonymous], RISIKOENTSCHEIDUNGSK
[5]  
Arrow K.J., 1965, Aspects of the theory of risk-bearing
[6]   RISK, RETURN, AND UTILITY [J].
BELL, DE .
MANAGEMENT SCIENCE, 1995, 41 (01) :23-30
[7]   ONE-SWITCH UTILITY-FUNCTIONS AND A MEASURE OF RISK [J].
BELL, DE .
MANAGEMENT SCIENCE, 1988, 34 (12) :1416-1424
[8]  
BELL DE, IN PRESS MANAGEMENT
[9]   EVALUATION OF 2 ALTERNATIVE MODELS FOR A THEORY OF RISK .1. ARE MOMENTS OF DISTRIBUTIONS USEFUL IN ASSESSING RISK [J].
COOMBS, CH ;
LEHNER, PE .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-HUMAN PERCEPTION AND PERFORMANCE, 1981, 7 (05) :1110-1123
[10]   CONJOINT DESIGN AND ANALYSIS OF THE BILINEAR MODEL - AN APPLICATION TO JUDGMENTS OF RISK [J].
COOMBS, CH ;
LEHNER, PE .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1984, 28 (01) :1-42