On the influence of the proposal distributions on a reversible jump MCMC algorithm applied to the detection of multiple change-points

被引:9
作者
Rotondi, R [1 ]
机构
[1] CNR, Ist Applicaz Matemat & Informat, I-20131 Milan, Italy
关键词
acceptance rate; Bayesian inference; hierarchical Bayesian model; levels of seismicity; Poisson process; random proposal; reversible jump Markov chain Monte Carlo;
D O I
10.1016/S0167-9473(02)00055-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we address some issues arising in the implementation of Markov chain Monte Carlo methods; in particular we analyse whether the choice of transition kernels depending on a specific problem speeds up the convergence of a Metropolis-Hastings-type algorithm. This approach is applied to the retrospective detection of multiple structural changes in the physical process generating earthquakes. As the number of changes is unknown, the adopted hierarchical Bayesian model has variable-dimension parameters. The sensitivity of the method and issues related to the estimation of both the parameters and the posterior model distributions are also dealt with. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:633 / 653
页数:21
相关论文
共 26 条
[1]  
[Anonymous], APPL STAT, DOI DOI 10.2307/2347565
[2]  
[Anonymous], 1980, BAYESIAN STAT
[3]  
[Anonymous], STAT SCI
[4]  
[Anonymous], APPL STAT-J ROY ST C
[5]  
Barrish J C, 1993, Bioorg Med Chem, V1, P309, DOI 10.1016/S0968-0896(00)82135-5
[6]  
Bender B, 1987, US GEOL SURV B, V1772, P48
[7]  
BESAG J, 1993, J ROY STAT SOC B MET, V55, P25
[8]  
BEST N, 1996, CONVERGENCE DIAGNOSI
[9]  
Brooks SP, 1998, J ROY STAT SOC D-STA, V47, P69, DOI 10.1111/1467-9884.00117
[10]  
CARLIN BP, 1992, APPL STAT-J ROY ST C, V41, P389