Transport properties of lithium hectorite-based composite electrolytes

被引:99
作者
Riley, M [1 ]
Fedkiw, PS [1 ]
Khan, SA [1 ]
机构
[1] N Carolina State Univ, Dept Chem Engn, Raleigh, NC 27695 USA
关键词
D O I
10.1149/1.1470652
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Conductivity and lithium-ion transference numbers are reported for physically gelled composite electrolytes using lithium hectorite clay as the charge carrier and carbonate solvents (ethylene carbonate, propylene carbonate, and dimethyl carbonate). Results are compared with those of typical lithium-ion battery electrolytes based on lithium hexafluorophosphate (LiPF6) and carbonate solvents. Room-temperature conductivities of the composite electrolytes as high as 2 x 10(-4) S/cm were measured. Because of the nature of the anionic clay particulates creating the gel structure, near-unity lithium-ion transference numbers are expected and were observed as high as 0.98, as measured by the dc polarization method using lithium-metal electrodes. Since the carbonates react with lithium and create mobile ionic species that significantly reduce the observed lithium-ion transference number, care must be taken to minimize or eliminate the presence of the reaction-formed ionic species. These hectorite-based composite systems are possible electrolytes for rechargeable lithium-ion batteries requiring high discharge rates. (C) 2002 The Electrochemical Society.
引用
收藏
页码:A667 / A674
页数:8
相关论文
共 22 条
[1]   POLY(ETHYLENE OXIDE)-SILICATE INTERCALATION MATERIALS [J].
ARANDA, P ;
RUIZHITZKY, E .
CHEMISTRY OF MATERIALS, 1992, 4 (06) :1395-1403
[2]   STUDIES OF LI ANODES IN THE ELECTROLYTE SYSTEM 2ME-THF/THF/ME-FURAN/LIASF6 [J].
AURBACH, D ;
ZABAN, A ;
GOFER, Y ;
ABRAMSON, O ;
BENZION, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (03) :687-696
[3]   A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance [J].
Aurbach, D ;
Moshkovich, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (08) :2629-2639
[4]   STEADY-STATE CURRENT FLOW IN SOLID BINARY ELECTROLYTE CELLS [J].
BRUCE, PG ;
VINCENT, CA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 225 (1-2) :1-17
[5]   Performance limitations of polymer electrolytes based on ethylene oxide polymers [J].
Buriez, O ;
Han, YB ;
Hou, J ;
Kerr, JB ;
Qiao, J ;
Sloop, SE ;
Tian, MM ;
Wang, SG .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :149-155
[6]   Characterization of some polyacrylonitrile-based electrolytes [J].
Choe, HS ;
Carroll, BG ;
Pasquariello, DM ;
Abraham, KM .
CHEMISTRY OF MATERIALS, 1997, 9 (01) :369-379
[7]   Li ion conductors based on laponite/poly(ethylene oxide) composites [J].
Doeff, MM ;
Reed, JS .
SOLID STATE IONICS, 1998, 113 :109-115
[8]   Transport properties of binary salt polymer electrolytes [J].
Doeff, MM ;
Edman, L ;
Sloop, SE ;
Kerr, J ;
De Jonghe, LC .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :227-231
[9]   ANALYSIS OF TRANSFERENCE NUMBER MEASUREMENTS BASED ON THE POTENTIOSTATIC POLARIZATION OF SOLID POLYMER ELECTROLYTES [J].
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (10) :3465-3468
[10]   THE IMPORTANCE OF THE LITHIUM ION TRANSFERENCE NUMBER IN LITHIUM POLYMER CELLS [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
ELECTROCHIMICA ACTA, 1994, 39 (13) :2073-2081