The G-protein β subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans

被引:135
作者
Wang, P
Perfect, JR
Heitman, J
机构
[1] Duke Univ, Med Ctr, Dept Genet, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA
[3] Duke Univ, Med Ctr, Dept Microbiol, Durham, NC 27710 USA
[4] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
[5] Duke Univ, Med Ctr, Howard Hughes Med Inst, Durham, NC 27710 USA
关键词
D O I
10.1128/MCB.20.1.352-362.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cryptococcus neoformans is an opportunistic fungal pathogen with a defined sexual cycle. The gene encoding a heterotrimeric G-protein beta subunit, GPB1, was cloned and disrupted. gpb1 mutant strains are sterile, indicating a role for this gene in mating. GPB1 plays an active role in mediating responses to pheromones in early mating steps (conjugation tube formation and cell fusion) and signals via a mitogen-activated protein (MAP) kinase cascade in both MAT alpha and MATa cells. The functions of GPB1 are distinct from those of the G alpha protein GPA1, which functions in a nutrient-sensing cyclic AMP (cAMP) pathway required for mating, virulence factor induction, and virulence. gpb1 mutant strains are also defective in monokaryotic fruiting in response to nitrogen starvation. We show that MATa cells stimulate monokaryotic fruiting of MAT alpha cells, possibly in response to mating pheromone, which may serve to disperse cells and spores to locate mating partners. In summary, the G beta subunit GPB1 and the G alpha subunit GPA1 function in distinct signaling pathways: one (GPB1) senses pheromones and regulates mating and haploid fruiting via a MAP kinase cascade, and the other (GPA1) senses nutrients and regulates mating, virulence factors, and pathogenicity via a cAMP cascade.
引用
收藏
页码:352 / 362
页数:11
相关论文
共 67 条
[1]   Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP [J].
Alspaugh, JA ;
Perfect, JR ;
Heitman, J .
GENES & DEVELOPMENT, 1997, 11 (23) :3206-3217
[2]  
ALSPAUGH JA, DIMORPHISM HUMAN PAT
[3]   The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence [J].
Chang, YC ;
Penoyer, LA ;
KwonChung, KJ .
INFECTION AND IMMUNITY, 1996, 64 (06) :1977-1983
[4]   COMPLEMENTATION OF A CAPSULE-DEFICIENT MUTATION OF CRYPTOCOCCUS-NEOFORMANS RESTORES ITS VIRULENCE [J].
CHANG, YC ;
KWONCHUNG, KJ .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (07) :4912-4919
[5]   NEW ROLES FOR G-PROTEIN BETA-GAMMA-DIMERS IN TRANSMEMBRANE SIGNALING [J].
CLAPHAM, DE ;
NEER, EJ .
NATURE, 1993, 365 (6445) :403-406
[6]   PHEROMONE-INDUCED PHOSPHORYLATION OF A G-PROTEIN BETA-SUBUNIT IN SACCHAROMYCES-CEREVISIAE IS ASSOCIATED WITH AN ADAPTIVE RESPONSE TO MATING PHEROMONE [J].
COLE, GM ;
REED, SI .
CELL, 1991, 64 (04) :703-716
[7]   Inhibitory and activating functions for MAPK Kss1 in the S-cerevisiae filamentous-growth signalling pathway [J].
Cook, JG ;
Bardwell, L ;
Thorner, J .
NATURE, 1997, 390 (6655) :85-88
[8]   RAS-DEPENDENT ACTIVATION OF MAP KINASE PATHWAY MEDIATED BY G-PROTEIN BETA-GAMMA-SUBUNITS [J].
CRESPO, P ;
XU, NZ ;
SIMONDS, WF ;
GUTKIND, JS .
NATURE, 1994, 369 (6479) :418-420
[9]   THE YEAST SCG1 GENE - A G-ALPHA-LIKE PROTEIN IMPLICATED IN THE A-FACTOR AND ALPHA-FACTOR RESPONSE PATHWAY [J].
DIETZEL, C ;
KURJAN, J .
CELL, 1987, 50 (07) :1001-1010
[10]   ISOLATION OF TELOMERE-LIKE SEQUENCES FROM CRYPTOCOCCUS-NEOFORMANS AND THEIR USE IN HIGH-EFFICIENCY TRANSFORMATION [J].
EDMAN, JC .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (06) :2777-2783