A robust controller for chaotic systems under external excitation

被引:53
作者
Tsai, HH [1 ]
Fuh, CC
Chang, CN
机构
[1] Natl Cent Univ, Dept Engn Mech, Chungli 32054, Taiwan
[2] Natl Taiwan Ocean Univ, Dept Mech & Marine Engn, Chilung 2022, Taiwan
关键词
D O I
10.1016/S0960-0779(01)00213-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that one can control a chaotic system under external force excitation to arbitrary trajectories, even when the desired trajectories are not located on the embedded orbits of a chaotic system. The method utilizes a newly developed sliding mode controller with a time-varying manifold dynamic to offer a feedback control in compensation with the external excitation. and drive the system orbits to desired states. The proposed controller does not need high gain to suppress the external force. and meanwhile, keeps robustness against parameter uncertainty and noise disturbance as does the traditional sliding mode control. Simulations are provided to illustrate the performance of the controller. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:627 / 632
页数:6
相关论文
共 20 条
  • [1] Non-linear control strategies for duffing systems
    Agrawal, AK
    Yang, JN
    Wu, JC
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1998, 33 (05) : 829 - 841
  • [2] Synchronization and control of chaotic systems
    Bai, EW
    Lonngren, KE
    [J]. CHAOS SOLITONS & FRACTALS, 1999, 10 (09) : 1571 - 1575
  • [3] Direct chaotic dynamics to any desired orbits via a closed-loop control
    Chen, CC
    [J]. PHYSICS LETTERS A, 1996, 213 (3-4) : 148 - 154
  • [4] CHEN G, 1999, IEEE T CIRCUITS SYST, V6, P1252
  • [5] ON FEEDBACK-CONTROL OF CHAOTIC CONTINUOUS-TIME SYSTEMS
    CHEN, GR
    DONG, XN
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (09): : 591 - 601
  • [6] STABILIZING HIGH-PERIOD ORBITS IN A CHAOTIC SYSTEM - THE DIODE RESONATOR
    HUNT, ER
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (15) : 1953 - 1955
  • [7] Sliding mode control for a class of chaotic systems
    Konishi, K
    Hirai, M
    Kokame, H
    [J]. PHYSICS LETTERS A, 1998, 245 (06) : 511 - 517
  • [8] Moon F.C, 1987, Chaotic Vibrations
  • [9] On analytical properties of delayed feedback control of chaos
    Nakajima, H
    [J]. PHYSICS LETTERS A, 1997, 232 (3-4) : 207 - 210
  • [10] ON LYAPUNOV CONTROL OF THE DUFFING EQUATION
    NIJMEIJER, H
    BERGHUIS, H
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08): : 473 - 477