The effects of nonnative interactions on protein folding rates: Theory and simulation

被引:142
作者
Clementi, C
Plotkin, SS
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, WM Keck Ctr Computat & Struct Biol, Houston, TX 77005 USA
[3] Baylor Coll Med, Houston, TX 77030 USA
[4] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
关键词
protein folding; frustration; free energy landscape; folding rate; minimalist model; molecular dynamics;
D O I
10.1110/ps.03580104
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proteins are minimally frustrated polymers. However, for realistic protein models, nonnative interactions must be taken into account. In this paper, we analyze the effect of nonnative interactions on the folding rate and on the folding free energy barrier. We present an analytic theory to account for the modification on the free energy landscape upon introduction of nonnative contacts, added as a perturbation to the strong native interactions driving folding. Our theory predicts a rate-enhancement regime at fixed temperature, under the introduction of weak, nonnative interactions. We have thoroughly tested this theoretical prediction with simulations of a coarse-grained protein model, by using an off-lattice C-alpha model of the src-SH3 domain. The strong agreement between results from simulations and theory confirm the nontrivial result that a relatively small amount of nonnative interaction energy can actually assist the folding to the native structure.
引用
收藏
页码:1750 / 1766
页数:17
相关论文
共 70 条
[1]   Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures [J].
Alm, E ;
Baker, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11305-11310
[2]   A surprising simplicity to protein folding [J].
Baker, D .
NATURE, 2000, 405 (6782) :39-42
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[5]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528
[6]   The range of the contact interactions and the kinetics of the Go models of proteins [J].
Cieplak, M ;
Hoang, TX .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (09) :1231-1242
[7]   Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins [J].
Clementi, C ;
Nymeyer, H ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) :937-953
[8]   How native-state topology affects the folding of dihydrofolate reductase and interleukin-1β [J].
Clementi, C ;
Jennings, PA ;
Onuchic, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5871-5876
[9]   Interplay among tertiary contacts, secondary structure formation and side-chain packing in the protein folding mechanism:: All-atom representation study of protein L [J].
Clementi, C ;
García, AE ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 326 (03) :933-954
[10]   Prediction of folding mechanism for circular-permuted proteins [J].
Clementi, C ;
Jennings, PA ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (04) :879-890