Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); Comparison of its substrate specificity with that of other SAP kinases

被引:340
作者
Goedert, M [1 ]
Cuenda, A [1 ]
Craxton, M [1 ]
Jakes, R [1 ]
Cohen, P [1 ]
机构
[1] UNIV DUNDEE,DEPT BIOCHEM,MRC,PROT PHOSPHORYLAT UNIT,DUNDEE DD1 4HN,SCOTLAND
关键词
cytokine; IL1; MAP; kinase; MEK; stress; TNF;
D O I
10.1093/emboj/16.12.3563
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A cDNA was cloned that encodes human stress-activated protein kinase-4 (SAPK4), a novel MAP kinase family member whose amino acid sequence is similar to 60% identical to that of the other three SAP kinases which contain a TGY motif in their activation domain. The mRNA encoding SAPK4 was found to be widely distributed in human tissues. When expressed in KB cells, SAPK4 was activated in response to cellular stresses and pro-inflammatory cytokines, in a manner similar to other SAPKs. SAPK4 was activated in vitro by SKK3 (also called MKK6) or when co-transfected with SKK3 into COS cells. SKK3 was the only activator of SAPK4 that was induced when KB cells were exposed to a cellular stress or stimulated with interleukin-1. These findings indicate that SKK3 mediates the activation of SAPK4. The substrate specificity of SAPK4 in vitro was similar to that of SAPK3. Both enzymes phosphorylated the transcription factors ATF2, Elk-1 and SAP-1 at similar rates, but were far less effective than SAPK2a (also called RK/p38) or SAPK2b (also called p38 beta) in activating MAPKAP kinase-2 and MAPKAP kinase-3. Unlike SAPK1 (also called JNK), SAPK3 and SAPK4 did not phosphorylate the activation domain of c-Jun. Unlike SAPK2a and SAPK2b, SAPK4 and SAPK3 were not inhibited by the drugs SB 203580 and SB 202190. Our results suggest that cellular functions previously attributed to SAPK1 and/or SAPK2 may be mediated by SAPK3 or SAPK4.
引用
收藏
页码:3563 / 3571
页数:9
相关论文
共 49 条
[1]   Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase [J].
Abe, J ;
Kusuhara, M ;
Ulevitch, RJ ;
Berk, BC ;
Lee, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (28) :16586-16590
[2]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[3]   The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis in response to tumour necrosis factor [J].
Beyaert, R ;
Cuenda, A ;
VandenBerghe, W ;
Plaisance, S ;
Lee, JC ;
Haegeman, G ;
Cohen, P ;
Fiers, W .
EMBO JOURNAL, 1996, 15 (08) :1914-1923
[4]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[5]   A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress [J].
Clifton, AD ;
Young, PR ;
Cohen, P .
FEBS LETTERS, 1996, 392 (03) :209-214
[6]  
COHEN P, 1997, IN PRESS TRENDS CELL
[7]   SB-203580 IS A SPECIFIC INHIBITOR OF A MAP KINASE HOMOLOG WHICH IS STIMULATED BY CELLULAR STRESSES AND INTERLEUKIN-1 [J].
CUENDA, A ;
ROUSE, J ;
DOZA, YN ;
MEIER, R ;
COHEN, P ;
GALLAGHER, TF ;
YOUNG, PR ;
LEE, JC .
FEBS LETTERS, 1995, 364 (02) :229-233
[8]   Purification and cDNA cloning of SAPKK3, the major activator of RK/p38 in stress- and cytokine-stimulated monocytes and epithelial cells [J].
Cuenda, A ;
Alonso, G ;
Morrice, N ;
Jones, M ;
Meier, R ;
Cohen, P ;
Nebreda, AR .
EMBO JOURNAL, 1996, 15 (16) :4156-4164
[9]   Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); Comparison of the specificities of SAPK3 and SAPK2 (RK/p38) [J].
Cuenda, A ;
Cohen, P ;
BueeScherrer, V ;
Goedert, M .
EMBO JOURNAL, 1997, 16 (02) :295-305
[10]   JNK1 - A PROTEIN-KINASE STIMULATED BY UV-LIGHT AND HA-RAS THAT BINDS AND PHOSPHORYLATES THE C-JUN ACTIVATION DOMAIN [J].
DERIJARD, B ;
HIBI, M ;
WU, IH ;
BARRETT, T ;
SU, B ;
DENG, TL ;
KARIN, M ;
DAVIS, RJ .
CELL, 1994, 76 (06) :1025-1037