Multiresolution flux decomposition

被引:152
作者
Howell, JF
Mahrt, L
机构
[1] National Center for Atmospheric Research, Boulder, CO
基金
美国国家科学基金会;
关键词
Reynolds averaging; turbulence; time series; cospectra; sampling error;
D O I
10.1023/A:1000210427798
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Geophysical variables are orthogonally decomposed by averaging time series using different averaging lengths, referred to as a (Haar) multiresolution decomposition. This simple and economic decomposition is associated with cospectra that formally satisfy Reynolds averaging rules for each averaging length. The multiresolution decomposition provides a natural estimate of the random error in estimating a mean turbulent flux. The Fourier and multiresolution decompositions are compared using aircraft data from BOREAS.
引用
收藏
页码:117 / 137
页数:21
相关论文
共 44 条
[1]   COOLEY-TUKEY-TYPE ALGORITHM FOR HAAR TRANSFORM [J].
AHMED, N ;
NATARAJAN, T ;
RAO, KR .
ELECTRONICS LETTERS, 1973, 9 (12) :276-278
[2]  
[Anonymous], 1993, Ten Lectures of Wavelets
[3]  
BENDAT JS, 1986, MEASUREMENT ANAL RAN
[4]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[5]  
BURT PJ, 1984, MULTIRESOLUTION IMAG, P6, DOI DOI 10.1007/978-3-642-51590-3_2
[6]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[7]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[8]  
DESJARDIN RL, 1996, UNPUB J GEOPHYS RES
[9]  
ELLIOT DF, 1982, FAST TRANSFORMS ALGO
[10]  
Gabor D., 1946, Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, V93, P429, DOI DOI 10.1049/JI-3-2.1946.0074