Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation

被引:124
作者
Haraguchi, Yuji [1 ]
Shimizu, Tatsuya [1 ]
Yamato, Masayuki [1 ]
Kikuchi, Akihiko [1 ]
Okano, Teruo [1 ]
机构
[1] Tokyo Womens Med Univ, Inst Adv Biomed Engn & Sci, Shinjuku Ku, Tokyo 1628666, Japan
基金
日本学术振兴会;
关键词
cardiac tissue engineering; electrophysiology; immunochemistry;
D O I
10.1016/j.biomaterials.2006.04.034
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Previously, we have successfully created pulsatile myocardial tissue grafts using our novel technology, "cell sheet engineering", that layers cell sheets fabricated on temperature-responsive culture dishes to form three-dimensional (3-D) structures. Electrical coupling is established between layered neonatal rat cardiomyocyte sheets, resulting in the synchronized beating of 3-D myocardial tissues. However, the mechanism by which these layered cardiomyocyte sheets communicate electrically is not well-understood. In this study, we used a multiple-electrode extracellular recording system and demonstrated that bilayer cardiomyocyte sheets coupled electrically with slight delays 34 2 min (mean SEM) after layering. These delays gradually decreased and the electrical actions of layered cell sheets were completely coupled 46 3 min (mean SEM) after initial layering. Immunohistological analysis showed that connexin43, a gap junction (GJ)-related protein, existed not only at cell-to-cell interfaces but also on the free cell membrane in the cardiomyocyte sheet. Additionally, neither connexin40 nor connexin45, but only connexin43 was detected between bilayer cardiomyocyte sheets within 30 min after layering. Dye transfer assay demonstrated that the exchange of small molecules via GJs occurred within 30 min. The cell sheet manipulation technique using the temperature-responsive culture dishes has substantial advances and the exciting potential in the fields of cell and tissue physiology, as well as tissue engineering. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4765 / 4774
页数:10
相关论文
共 37 条
[1]   Can tissue engineering mend broken hearts? [J].
Akins, RE .
CIRCULATION RESEARCH, 2002, 90 (02) :120-122
[2]   Gating and regulation of connexin 43 (U43) hemichannels [J].
Contreras, JE ;
Sáez, JC ;
Bukauskas, FF ;
Bennett, MVL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (20) :11388-11393
[3]   Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture [J].
Contreras, JE ;
Sánchez, HA ;
Eugenin, EA ;
Speidel, D ;
Theis, M ;
Willecke, K ;
Bukauskas, FF ;
Bennett, MVL ;
Sáez, JC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (01) :495-500
[4]   EXPRESSION OF MULTIPLE CONNEXINS IN CULTURED NEONATAL RAT VENTRICULAR MYOCYTES [J].
DARROW, BJ ;
LAING, JG ;
LAMPE, PD ;
SAFFITZ, JE ;
BEYER, EC .
CIRCULATION RESEARCH, 1995, 76 (03) :381-387
[5]   PROPERTIES OF A NONJUNCTIONAL CURRENT EXPRESSED FROM A RAT CONNEXIN46 CDNA IN XENOPUS-OOCYTES [J].
EBIHARA, L ;
STEINER, E .
JOURNAL OF GENERAL PHYSIOLOGY, 1993, 102 (01) :59-74
[6]   SPECIFIC PERMEABILITY AND SELECTIVE FORMATION OF GAP JUNCTION CHANNELS IN CONNEXIN-TRANSFECTED HELA-CELLS [J].
ELFGANG, C ;
ECKERT, R ;
LICHTENBERGFRATE, H ;
BUTTERWECK, A ;
TRAUB, O ;
KLEIN, RA ;
HULSER, DF ;
WILLECKE, K .
JOURNAL OF CELL BIOLOGY, 1995, 129 (03) :805-817
[7]   Tissue engineering: A 21st century solution to surgical reconstruction [J].
Fuchs, JR ;
Nasseri, BA ;
Vacanti, JP .
ANNALS OF THORACIC SURGERY, 2001, 72 (02) :577-591
[8]  
GUPTA VK, 1994, INVEST OPHTH VIS SCI, V35, P3747
[9]   Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes [J].
Harimoto, M ;
Yamato, M ;
Hirose, M ;
Takahashi, C ;
Isoi, Y ;
Kikuchi, A ;
Okano, T .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 62 (03) :464-470
[10]   Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface [J].
Hirose, M ;
Kwon, OH ;
Yamato, M ;
Kikuchi, A ;
Okano, T .
BIOMACROMOLECULES, 2000, 1 (03) :377-381