N=4 mechanics, WDVV equations and roots

被引:45
作者
Galajinsky, Anton [1 ]
Lechtenfeld, Olaf [2 ]
Polovnikov, Kirill [1 ]
机构
[1] Tomsk Polytech Univ, Phys Math Lab, Tomsk 634050, Russia
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2009年 / 03期
关键词
Integrable Equations in Physics; Extended Supersymmetry; Conformal and W Symmetry; QUANTUM-MECHANICS; CALOGERO MODELS; SYSTEMS;
D O I
10.1088/1126-6708/2009/03/113
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
N=4 superconformal multi-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey a system of partial differential equations linear in U and generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation for F. Putting U equivalent to 0 yields a class of models (with zero central charge) which are encoded by the finite Coxeter root systems. We extend these WDVV solutions F in two ways: the An system is deformed n-parametrically to the edge set of a general orthocentric n-simplex, and the BCF-type systems form one-parameter families. A classification strategy is proposed. A nonzero central charge requires turning on U in a given F background, which we show is outside the reach of the standard root-system ansatz for indecomposable systems of more than three particles. In the three-body case, however, this ansatz can be generalized to establish a series of nontrivial models based on the dihedral groups I-2(p), which are permutation symmetric if 3 divides p. We explicitly present their full prepotentials.
引用
收藏
页数:28
相关论文
共 20 条
[1]   N=4 supersymmetric 3-particles Calogero model [J].
Bellucci, S. ;
Krivonos, S. ;
Sutulin, A. .
NUCLEAR PHYSICS B, 2008, 805 (1-2) :24-39
[2]   New insight into the Witten-Dijkgraff-Verlinde-Verlinde equation [J].
Bellucci, S ;
Galajinsky, A ;
Latini, E .
PHYSICAL REVIEW D, 2005, 71 (04) :044023-1
[3]   New many-body superconformal models as reductions of simple composite systems [J].
Bellucci, S ;
Galajinsky, A ;
Krivonos, S .
PHYSICAL REVIEW D, 2003, 68 (06)
[4]   Locus configurations and ∨-systems [J].
Chalykh, OA ;
Veselov, AP .
PHYSICS LETTERS A, 2001, 285 (5-6) :339-349
[5]   TOPOLOGICAL STRINGS IN D-LESS-THAN-1 [J].
DIJKGRAAF, R ;
VERLINDE, H ;
VERLINDE, E .
NUCLEAR PHYSICS B, 1991, 352 (01) :59-86
[6]  
Edmonds A. L., 2005, Results. Math, V47, P266, DOI [10.1007/BF03323029, DOI 10.1007/BF03323029]
[7]  
FEDORUK S, ARXIV08124276
[8]  
Feigin M., ARXIV07105729
[9]   AN EXACTLY SOLVABLE N-PARTICLE SYSTEM IN SUPERSYMMETRIC QUANTUM-MECHANICS [J].
FREEDMAN, DZ ;
MENDE, PF .
NUCLEAR PHYSICS B, 1990, 344 (02) :317-343
[10]  
Galajinsky A, 2007, J HIGH ENERGY PHYS