Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia

被引:97
作者
Sheng, HX
Enghild, JJ
Bowler, R
Patel, M
Batinic-Haberle, I
Calvi, CL
Day, BJ
Pearlstein, RD
Crapo, JD
Warner, DS
机构
[1] Duke Univ, Med Ctr, Dept Anesthesiol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Surg Neurosurg, Durham, NC 27710 USA
[3] Duke Univ, Med Ctr, Dept Biochem, Multidisciplinary Neuroprotect Labs, Durham, NC 27710 USA
[4] Univ Aarhus, Dept Biol Mol & Struct, Aarhus, Denmark
[5] Natl Jewish Med & Res Ctr, Dept Med, Denver, CO USA
关键词
brain; ischemia; metalloporphyrin; catalytic antioxidant; mouse; rat; proteomic; cell culture; aconitase; free radicals;
D O I
10.1016/S0891-5849(02)00979-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen species play a role in the response of brain to ischemia. The effects of metalloporphyrin catalytic antioxidants (AEOL 10113 and AEOL 10150) were examined after murine middle cerebral artery occlusion (MCAO). Ninety minutes after reperfusion from 90 min MCAO in the rat, AEOL 10113, AEOL 10150, or vehicle were given intracerebroventricularly. AEOL 10113 and AEOL 10150 similarly reduced infarct size (35%) and neurologic deficit. AEOL 10113 caused behavioral side effects at twice the neuroprotective dose while AEOL 10150 required a 15-fold increase from the neuroprotective dose to cause behavioral changes. AEOL 10150, given 6 h after 90 min MCAO, reduced total infarct size by 43% without temperature effects. Brain AEOL 10150 elimination t(1/2) was 10 h. In the mouse, intravenous AEOL 10150 infusion post-MCAO reduced both infarct size (25%) and neurologic deficit. Brain AEOL 10150 uptake, greater in the ischemic hemisphere, was dose- and time-dependent. AEOL 10150 had direct effects on proteomic events and ameliorated changes caused by ischemia. In primary mixed neuronal/glial cultures exposed to 2 h of O-2/glucose deprivation, AEOL 10150 reduced lactate dehydrogenase release dose-dependently and selectively preserved aconitase activity in concentrations consistent with neuroprotection in vivo. AEOL 10150 is an effective neuroprotective compound offering a wide therapeutic window with a large margin of safety against adverse behavioral side effects. (C) 2002 Elsevier Science Inc.
引用
收藏
页码:947 / 961
页数:15
相关论文
共 39 条
[1]   REPERFUSION INCREASES NEUTROPHILS AND LEUKOTRIENE-B4 RECEPTOR-BINDING IN RAT FOCAL ISCHEMIA [J].
BARONE, FC ;
SCHMIDT, DB ;
HILLEGASS, LM ;
PRICE, WJ ;
WHITE, RF ;
FEUERSTEIN, GZ ;
CLARK, RK ;
LEE, EV ;
GRISWOLD, DE ;
SARAU, HM .
STROKE, 1992, 23 (09) :1337-1347
[2]   Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vivo and in vitro superoxide dismutating activities of manganese(III) and iron(III) water-soluble porphyrins [J].
Batinic-Haberle, I ;
Spasojevic, I ;
Hambright, P ;
Benov, L ;
Crumbliss, AL ;
Fridovich, I .
INORGANIC CHEMISTRY, 1999, 38 (18) :4011-4022
[3]   The ortho effect makes Manganese(III) Meso-Tetrakis(N-Methylpyridinium-2-yl) porphyrin a powerful and potentially useful superoxide dismutase mimic [J].
Batinic-Haberle, I ;
Benov, L ;
Spasojevic, I ;
Fridovich, I .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (38) :24521-24528
[4]   Middle cerebral artery occlusion in the rat by intraluminal suture - Neurological and pathological evaluation of an improved model [J].
Belayev, L ;
Alonso, OF ;
Busto, R ;
Zhao, WZ ;
Ginsberg, MD .
STROKE, 1996, 27 (09) :1616-1622
[5]   INFLUENCE OF HYPOTENSION AND HYPOTENSIVE TECHNIQUE ON THE AREA OF PROFOUND REDUCTION IN CEREBRAL BLOOD-FLOW DURING FOCAL CEREBRAL-ISCHEMIA IN THE RAT [J].
COLE, DJ ;
DRUMMOND, JC ;
SHAPIRO, HM ;
ZORNOW, MH .
BRITISH JOURNAL OF ANAESTHESIA, 1990, 64 (04) :498-502
[6]   Very delayed infarction after mild focal cerebral ischemia: A role for apoptosis? [J].
Du, C ;
Hu, R ;
Csernansky, CA ;
Hsu, CY ;
Choi, DW .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1996, 16 (02) :195-201
[7]   Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons [J].
Dugan, LL ;
Gabrielsen, JK ;
Yu, SP ;
Lin, TS ;
Choi, DW .
NEUROBIOLOGY OF DISEASE, 1996, 3 (02) :129-135
[8]   IN-VIVO DETECTION OF SUPEROXIDE ANION PRODUCTION BY THE BRAIN USING A CYTOCHROME-C ELECTRODE [J].
FABIAN, RH ;
DEWITT, DS ;
KENT, TA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1995, 15 (02) :242-247
[9]   NEUROLOGICAL DEFICIT AND EXTENT OF NEURONAL NECROSIS ATTRIBUTABLE TO MIDDLE CEREBRAL-ARTERY OCCLUSION IN RATS - STATISTICAL VALIDATION [J].
GARCIA, JH ;
WAGNER, S ;
LIU, KF ;
HU, XJ .
STROKE, 1995, 26 (04) :627-634
[10]  
GARDNER PR, 1992, J BIOL CHEM, V267, P8757