Bayesian methods for neural networks and related models

被引:107
作者
Titterington, DM [1 ]
机构
[1] Univ Glasgow, Dept Stat, Glasgow G12 8QQ, Lanark, Scotland
关键词
Bayesian methods; Bayesian model choice; feed-forward neural network; graphical model; Laplace approximation; machine learning; Markov chain Monte Carlo; variational approximation;
D O I
10.1214/088342304000000099
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Models such as feed-forward neural networks and certain other structures investigated in the computer science literature are not amenable to closed-form Bayesian analysis. The paper reviews the various approaches taken to overcome this difficulty, involving the use of Gaussian approximations, Markov chain Monte Carlo simulation routines and a class of non-Gaussian but "deterministic" approximations called variational approximations.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 98 条
[1]   Robust full Bayesian learning for radial basis networks [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A .
NEURAL COMPUTATION, 2001, 13 (10) :2359-2407
[2]  
Andrieu C, 2000, ADV NEUR IN, V12, P379
[3]  
[Anonymous], P 17 C UNC ART INT
[4]   Parameter estimation for hidden Markov chains [J].
Archer, GEB ;
Titterington, DM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) :365-390
[5]   Independent factor analysis [J].
Attias, H .
NEURAL COMPUTATION, 1999, 11 (04) :803-851
[6]  
Attias H, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P21
[7]  
Attias H, 2000, ADV NEUR IN, V12, P209
[8]  
Barber D., 1998, Neural Networks and Machine Learning. Proceedings, P215
[9]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[10]  
Bishop C. M., 2000, P 16 C UNC ART INT S, P46