C0-semigroups generated by second order differential operators with general Wentzell boundary conditions

被引:46
作者
Favini, A
Goldstein, ER
Goldstein, JA
Romanelli, S
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
[2] Univ Memphis, CERI, Memphis, TN 38152 USA
[3] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[4] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
关键词
C-0-semigroups on C[0,1; nonlinear second order differential operators; generalized Wentzell boundary condition;
D O I
10.1090/S0002-9939-00-05486-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let us consider the operator (A) over tilde u(x) = phi(x, u'(x))u"(x), where phi is positive and continuous in (0; 1) x R and A is equipped with the so-called generalized Wentzell boundary condition which is of the form a (A) over tilde u + Bu' + cu = 0 at each boundary point, where (a, b, c) not equal (0, 0, 0). This class of boundary conditions strictly includes Dirichlet, Neumann and Robin conditions. Under suitable assumptions on phi, we prove that (A) over tilde generates a positive C-0-semigroup on C[0, 1] and, hence, many previous (linear or nonlinear) results are extended substantially.
引用
收藏
页码:1981 / 1989
页数:9
相关论文
共 9 条
[1]  
[Anonymous], THEOR PROBAB APPL
[2]  
CLEMENT P, 1986, P K NED AKAD A MATH, V89, P379
[3]  
Gilbarg D, 1983, GRUNDLEHREN MATH WIS, V224
[4]   NONLINEAR SINGULAR DIFFUSION WITH NONLINEAR BOUNDARY-CONDITIONS [J].
GOLDSTEIN, GR .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (11) :779-798
[5]  
Goldstein J., 1989, Differ. Integr. Equ, V2, P216
[6]  
GOLDSTEIN JA, 1989, LECT NOTES PURE APPL, V116, P189
[7]   SINGULAR NONLINEAR PARABOLIC BOUNDARY-VALUE-PROBLEMS IN ONE SPACE DIMENSION [J].
GOLDSTEIN, JA ;
LIN, CY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 68 (03) :429-443
[8]  
HELLWIG G, 1964, DIFFERENTIALOPERATOR
[9]  
Taira K., 1988, DIFFUSION PROCESSES