Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon

被引:220
作者
Bernardi, Marco [1 ,2 ]
Vigil-Fowler, Derek [1 ,2 ]
Lischner, Johannes [1 ,2 ]
Neaton, Jeffrey B. [1 ,2 ,3 ,4 ]
Louie, Steven G. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[4] Kavli Inst Energy Nanosci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
LOCALIZED WANNIER FUNCTIONS; SOLAR-ENERGY CONVERSION; QUASI-PARTICLE; ELECTRON-GAS; SEMICONDUCTORS; EFFICIENCY; CELLS; TRANSPORT;
D O I
10.1103/PhysRevLett.112.257402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no experimental input other than the structure of the material. We apply our approach to study the relaxation time and mean free path of hot carriers in Si, and map the band and k dependence of these quantities. We demonstrate that a hot carrier distribution characteristic of Si under solar illumination thermalizes within 350 fs, in excellent agreement with pump-probe experiments. Our work sheds light on the subpicosecond time scale after sunlight absorption in Si, and constitutes a first step towards ab initio quantification of hot carrier dynamics in materials.
引用
收藏
页数:5
相关论文
共 36 条
[1]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[2]   ELECTRON DRIFT VELOCITY IN SILICON [J].
CANALI, C ;
JACOBONI, C ;
NAVA, F ;
OTTAVIANI, G ;
ALBERIGIQUARANTA, A .
PHYSICAL REVIEW B, 1975, 12 (06) :2265-2284
[3]   Electron-phonon interaction in tetrahedral semiconductors [J].
Cardona, M .
SOLID STATE COMMUNICATIONS, 2005, 133 (01) :3-18
[4]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[5]   PLASMONICS Harvest season for hot electrons [J].
Chalabi, Hamidreza ;
Brongersma, Mark L. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :229-230
[6]   Slowing of carrier cooling in hot carrier solar cells [J].
Conibeer, G. J. ;
Konig, D. ;
Green, M. A. ;
Guillemoles, J. F. .
THIN SOLID FILMS, 2008, 516 (20) :6948-6953
[7]   Progress on hot carrier cells [J].
Conibeer, Gavin ;
Ekins-Daukes, Nicholas ;
Guillemoles, Jean-Francois ;
Konig, Dirk ;
Cho, Eun-Chel ;
Jiang, Chu-Wei ;
Shrestha, Santosh ;
Green, Martin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) :713-719
[8]   BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures [J].
Deslippe, Jack ;
Samsonidze, Georgy ;
Strubbe, David A. ;
Jain, Manish ;
Cohen, Marvin L. ;
Louie, Steven G. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (06) :1269-1289
[9]   MEASUREMENT OF ULTRAFAST HOT-CARRIER RELAXATION IN SILICON BY THIN-FILM-ENHANCED, TIME-RESOLVED REFLECTIVITY [J].
DOANY, FE ;
GRISCHKOWSKY, D .
APPLIED PHYSICS LETTERS, 1988, 52 (01) :36-38
[10]  
Fischetti M, 1996, P EUR SOL STAT DEV R, P813