Causal inference with general treatment regimes: Generalizing the propensity score

被引:522
作者
Imai, K [1 ]
van Dyk, DA
机构
[1] Princeton Univ, Dept Polit, Princeton, NJ 08544 USA
[2] Univ Calif Irvine, Dept Stat, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
medical expenditure; nonrandom treatment assignment; observational studies; return to schooling; subclassification; treatment effect;
D O I
10.1198/016214504000001187
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we develop the theoretical properties of the propensity function, which is a generalization of the propensity score of Rosenbaum and Rubin. Methods based on the propensity score have long been used for causal inference in observational studies; they are easy to use and can effectively reduce the bias caused by nonrandom treatment assignment. Although treatment regimes need not be binary in practice, the propensity score methods are generally confined to binary treatment scenarios. Two possible exceptions have been suggested for ordinal and categorical treatments. In this article we develop theory and methods that encompass all of these techniques and widen their applicability by allowing for arbitrary treatment regimes. We illustrate our propensity function methods by applying them to two datasets; we estimate the effect of smoking on medical expenditure and the effect of schooling on wages. We also conduct simulation studies to investigate the performance of our methods.
引用
收藏
页码:854 / 866
页数:13
相关论文
共 56 条
[1]  
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
[2]  
Angrist JD, 1999, J APPL ECONOM, V14, P57, DOI 10.1002/(SICI)1099-1255(199901/02)14:1<57::AID-JAE501>3.0.CO
[3]  
2-G
[4]   DOES COMPULSORY SCHOOL ATTENDANCE AFFECT SCHOOLING AND EARNINGS [J].
ANGRIST, JD ;
KRUEGER, AB .
QUARTERLY JOURNAL OF ECONOMICS, 1991, 106 (04) :979-1014
[5]   2-STAGE LEAST-SQUARES ESTIMATION OF AVERAGE CAUSAL EFFECTS IN MODELS WITH VARIABLE TREATMENT INTENSITY [J].
ANGRIST, JD ;
IMBENS, GW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :431-442
[6]  
ANGRIST JD, 1992, J AM STAT ASSOC, V87, P328
[7]   SPLIT-SAMPLE INSTRUMENTAL VARIABLES ESTIMATES OF THE RETURN TO SCHOOLING [J].
ANGRIST, JD ;
KRUEGER, AB .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1995, 13 (02) :225-235
[8]   PROBLEMS WITH INSTRUMENTAL VARIABLES ESTIMATION WHEN THE CORRELATION BETWEEN THE INSTRUMENTS AND THE ENDOGENOUS EXPLANATORY VARIABLE IS WEAK [J].
BOUND, J ;
JAEGER, DA ;
BAKER, RM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :443-450
[9]  
Card David., 1995, Research in Labor Economics, V14, P23
[10]   Estimating and using propensity scores with partially missing data [J].
D'Agostino, RB ;
Rubin, DB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) :749-759