Expected-posterior prior distributions for model selection

被引:91
作者
Pérez, JM
Berger, JO
机构
[1] Univ Simon Bolivar, Ctr Estadist & Software Matemat, Caracas 1080A, Venezuela
[2] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
default Bayesian model selection; intrinsic Bayes factor; intrinsic prior; mixture model;
D O I
10.1093/biomet/89.3.491
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the problem of comparing parametric models using a Bayesian approach. A new method of developing prior distributions for the model parameters is presented, called the expected-posterior prior approach. The idea is to define the priors for all models from a common underlying predictive distribution, in such a way that the resulting priors are amenable to modern Markov chain Monte Carlo computational techniques, The approach has subjective Bayesian and default Bayesian implementations, and overcomes the most significant impediment to Bayesian model selection, that of ensuring that prior distributions for the various models are appropriately compatible.
引用
收藏
页码:491 / 511
页数:21
相关论文
共 29 条
[1]  
AITKIN M, 1991, J ROY STAT SOC B MET, V53, P111
[2]  
Berger J.O., 1998, Sankhya A, V60, P307
[3]  
Berger J.O., 1999, ENCY STAT SCI, V3, P20
[4]   The intrinsic Bayes factor for model selection and prediction [J].
Berger, JO ;
Pericchi, LR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :109-122
[5]  
BERGER JO, 1996, MODELLING PREDICTION, P276
[6]  
BERGER JO, 2001, MODEL SELECTION, P135
[7]  
CARLIN BP, 1995, J ROY STAT SOC B MET, V57, P473
[8]   Computational and inferential difficulties with mixture posterior distributions. [J].
Celeux, G ;
Hurn, M ;
Robert, CP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) :957-970
[9]  
DIEBOLT J, 1994, J ROY STAT SOC B MET, V56, P363
[10]   Nonsubjective Bayes testing - an overview [J].
Ghosh, JK ;
Samanta, T .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 103 (1-2) :205-223