Quantum chemical modeling of infrared and Raman activities in lithium-doped amorphous carbon nanostructures:: hexa-peri-hexabenzocoron as a model for hydrogen-rich carbon materials

被引:12
作者
Brancolini, G
Negri, F
机构
[1] Univ Bologna, Dipartimento Chim G Ciamician, I-40126 Bologna, Italy
[2] UdR, INSTM, I-40126 Bologna, Italy
关键词
doped carbon; computational chemistry; infrared spectroscopy; Raman spectroscopy; modeling;
D O I
10.1016/j.carbon.2003.12.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The preferential sites for lithium doping in hydrogen-rich amorphous carbon materials are investigated by considering, as a model, a large polycyclic aromatic hydrocarbon (PAH): hexa-peri-hexabenzocoronene. Quantum-chemical calculations are carried out with B3LYP/6-31G* density functional theory to study the lowest energy configurations of the PAH doped with two lithium atoms. Infrared and Raman activities are computed for the most stable configurations and compared with the spectra of the pristine material to disclose the effect of doping on the vibrational spectra of hydrogen-rich amorphous carbon materials. It is shown that interaction with lithium atoms perturbs appreciably the atomic and electronic structure of the nanometric graphene sheet and leads to new marker bands in the spectra. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1001 / 1005
页数:5
相关论文
共 14 条
[1]   Infrared spectra of polycyclic aromatic hydrocarbons (PAHs) [J].
Bauschlicher, CW ;
Bakes, ELO .
CHEMICAL PHYSICS, 2000, 262 (2-3) :285-291
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   Vibrational spectra of superdense lithium graphite intercalation compounds [J].
Bondarenko, GN ;
Nalimova, VA ;
Fateev, OV ;
Guerard, D ;
Semenenko, KN .
CARBON, 1998, 36 (7-8) :1107-1112
[4]   CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS [J].
BOYS, SF ;
BERNARDI, F .
MOLECULAR PHYSICS, 1970, 19 (04) :553-&
[5]  
BRANCOLINI G, UNPUB
[6]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[7]   RAMAN-SCATTERING IN GRAPHITE-LITHIUM INTERCALATION COMPOUNDS [J].
EKLUND, PC ;
DRESSELHAUS, G ;
DRESSELHAUS, MS ;
FISCHER, JE .
PHYSICAL REVIEW B, 1980, 21 (10) :4705-4709
[8]   First-principles study of the lithium interaction with polycyclic aromatic hydrocarbons [J].
Ishikawa, S ;
Madjarova, G ;
Yamabe, T .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (48) :11986-11993
[9]   High levels of alkali-metal storage in thin films of hexa-peri-hexabenzocoronene [J].
Keil, M ;
Samorí, P ;
dos Santos, DA ;
Birgerson, J ;
Friedlein, R ;
Dkhissi, A ;
Watson, M ;
Müllen, K ;
Brédas, JL ;
Rabe, JP ;
Salaneck, WR .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (24) :10854-10860
[10]   Lithium interaction with carbon nanotubes [J].
Nalimova, VA ;
Sklovsky, DE ;
Bondarenko, GN ;
AlvergnatGaucher, H ;
Bonnamy, S ;
Beguin, F .
SYNTHETIC METALS, 1997, 88 (02) :89-93