Secretion of phosphoglycerate kinase from tumour cells is controlled by oxygen-sensing hydroxylases

被引:52
作者
Daly, EB
Wind, T
Jiang, XM
Sun, L
Hogg, PJ [1 ]
机构
[1] Univ New S Wales, Sch Med Sci, Ctr Vasc Res, Sydney, NSW 2052, Australia
[2] Prince Wales Hosp, Dept Haematol, Randwick, NSW 2031, Australia
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 2004年 / 1691卷 / 01期
基金
英国医学研究理事会;
关键词
phosphoglycerate kinase; angiostatin; hypoxia; protein hydroxylase; secretion;
D O I
10.1016/j.bbamcr.2003.11.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Solid tumour cells employ glycolytic enzymes including phosphoglycerate kinase (PGK) to make ATP when their supply of oxygen is limiting. PGK is also secreted by tumour cells and facilitates cleavage of disulfide bonds in plasmin, which triggers proteolytic release of the angiogenesis inhibitor, angiostatin. Although PGK production by tumour cells was enhanced by hypoxia, its secretion was inhibited. Inhibition of secretion correlated with decrease in angiostatin formation by the turnour cells. In contrast, hypoxia did not inhibit the secretion of the angiogenesis activator, vascular endothelial cell growth factor (VEGF). PGK secretion was reversed by normoxia and was under control of the oxygen-sensing protein hydroxylases, as inhibitors of this class of enzymes mimicked the effect of hypoxia on PGK secretion. Direct hydroxylation of PGK was not the mechanism by which the protein hydroxylases controlled its secretion. These findings show that production and secretion of PGK are regulated separately and indicate that oxygen and the protein hydroxylases can control not only gene expression but also protein secretion. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 21 条
  • [1] Berggren M, 1996, ANTICANCER RES, V16, P3459
  • [2] A conserved family of prolyl-4-hydroxylases that modify HIF
    Bruick, RK
    McKnight, SL
    [J]. SCIENCE, 2001, 294 (5545) : 1337 - 1340
  • [3] C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation
    Epstein, ACR
    Gleadle, JM
    McNeill, LA
    Hewitson, KS
    O'Rourke, J
    Mole, DR
    Mukherji, M
    Metzen, E
    Wilson, MI
    Dhanda, A
    Tian, YM
    Masson, N
    Hamilton, DL
    Jaakkola, P
    Barstead, R
    Hodgkin, J
    Maxwell, PH
    Pugh, CW
    Schofield, CJ
    Ratcliffe, PJ
    [J]. CELL, 2001, 107 (01) : 43 - 54
  • [4] Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis
    Hanahan, D
    Folkman, J
    [J]. CELL, 1996, 86 (03) : 353 - 364
  • [5] Biological regulation through protein disulfide bond cleavage
    Hogg, PJ
    [J]. REDOX REPORT, 2002, 7 (02) : 71 - 77
  • [6] Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway
    Huang, LE
    Gu, J
    Schau, M
    Bunn, HF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) : 7987 - 7992
  • [7] HIFα targeted for VHL-mediated destruction by proline hydroxylation:: Implications for O2 sensing
    Ivan, M
    Kondo, K
    Yang, HF
    Kim, W
    Valiando, J
    Ohh, M
    Salic, A
    Asara, JM
    Lane, WS
    Kaelin, WG
    [J]. SCIENCE, 2001, 292 (5516) : 464 - 468
  • [8] Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
    Jaakkola, P
    Mole, DR
    Tian, YM
    Wilson, MI
    Gielbert, J
    Gaskell, SJ
    von Kriegsheim, A
    Hebestreit, HF
    Mukherji, M
    Schofield, CJ
    Maxwell, PH
    Pugh, CW
    Ratcliffe, PJ
    [J]. SCIENCE, 2001, 292 (5516) : 468 - 472
  • [9] Expression of hypoxia-inducible genes in tumor cells
    Kress, S
    Stein, A
    Maurer, P
    Weber, B
    Reichert, J
    Buchmann, A
    Huppert, P
    Schwarz, M
    [J]. JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 1998, 124 (06) : 315 - 320
  • [10] Asparagine hydroxylation of the HIF transactivation domain: A hypoxic switch
    Lando, D
    Peet, DJ
    Whelan, DA
    Gorman, JJ
    Whitelaw, ML
    [J]. SCIENCE, 2002, 295 (5556) : 858 - 861