PimF, a mannosyltransferase of mycobacteria, is involved in the biosynthesis of phosphatidylinositol mannosides and lipoarabinomannan

被引:52
作者
Alexander, DC [1 ]
Jones, JRW [1 ]
Tan, T [1 ]
Chen, JM [1 ]
Liu, J [1 ]
机构
[1] Univ Toronto, Dept Med Genet & Microbiol, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1074/jbc.M400791200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphatidylinositol mannosides (PIMs) and their related molecules lipomannan (LM) and lipoarabinomannan ( LAM) are important components of the mycobacterial cell wall. These molecules mediate host-pathogen interactions and exhibit immunomodulatory activities. The biosynthesis of these lipoglycans is not fully understood. In this study, we have identified a mycobacterial gene (Rv1500) that is involved in the synthesis of PIMs. We have named this gene pimF. Transposon mutagenesis of pimF of Mycobacterium marinum resulted in multiple phenotypes, including altered colony morphology, disappearance of tetracyl-PIM7, and accumulation of tetraacyl-PIM5. The syntheses of LAM and LM were also affected. In addition, the pimF mutant exhibited a defect during infection of cultured macrophage cells. Although the mutant was able to replicate and persist within macrophages, the initial cell entry step was inefficient. Transformation of the M. marinum mutant with the pimF homolog of Mycobacterium tuberculosis complemented all of the above mentioned phenotypes. These results provide evidence that PimF is a mannosyltransferase. However, sequence analysis indicates that PimF is distinct from mannosyltransferases involved in the early steps of PIM synthesis. PimF catalyzes the formation of high molecular weight PIMs, which are precursors for the synthesis of LAM and LM. As such, this work marks the first analysis of a mannosyltransferase involved in the later stages of PIM synthesis.
引用
收藏
页码:18824 / 18833
页数:10
相关论文
共 40 条
[1]   Identification of essential amino acids in the bacterial α-mannosyltransferase AceA [J].
Abdian, PL ;
Lellouch, AC ;
Gautier, C ;
Ielpi, L ;
Geremia, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (51) :40568-40575
[2]   Murine natural killer cells contribute to the granulomatous reaction caused by mycobacterial cell walls [J].
Apostolou, I ;
Takahama, Y ;
Belmant, C ;
Kawano, T ;
Huerre, M ;
Marchal, G ;
Cui, J ;
Taniguchi, M ;
Nakauchi, H ;
Fournié, JJ ;
Kourilsky, P ;
Gachelin, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :5141-5146
[3]   Biosynthesis of mycobacterial lipoarabinomannan [J].
Besra, GS ;
Morehouse, CB ;
Rittner, CM ;
Waechter, CJ ;
Brennan, PJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (29) :18460-18466
[4]  
Besra GS, 1998, METH MOL B, V101, P91, DOI 10.1385/0-89603-471-2:91
[5]   THE ENVELOPE OF MYCOBACTERIA [J].
BRENNAN, PJ ;
NIKAIDO, H .
ANNUAL REVIEW OF BIOCHEMISTRY, 1995, 64 :29-63
[6]   Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors [J].
Brightbill, HD ;
Libraty, DH ;
Krutzik, SR ;
Yang, RB ;
Belisle, JT ;
Bleharski, JR ;
Maitland, M ;
Norgard, MV ;
Plevy, SE ;
Smale, ST ;
Brennan, PJ ;
Bloom, BR ;
Godowski, PJ ;
Modlin, RL .
SCIENCE, 1999, 285 (5428) :732-736
[7]   Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics [J].
Brosch, R ;
Gordon, SV ;
Billault, A ;
Garnier, T ;
Eiglmeier, K ;
Soravito, C ;
Barrell, BG ;
Cole, ST .
INFECTION AND IMMUNITY, 1998, 66 (05) :2221-2229
[8]   Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects [J].
Chatterjee, D ;
Khoo, KH .
GLYCOBIOLOGY, 1998, 8 (02) :113-120
[9]   CHARACTERIZATION OF THE MYCOBACTERIUM-TUBERCULOSIS PHAGOSOME AND EVIDENCE THAT PHAGOSOMAL MATURATION IS INHIBITED [J].
CLEMENS, DL ;
HORWITZ, MA .
JOURNAL OF EXPERIMENTAL MEDICINE, 1995, 181 (01) :257-270
[10]   Macrophage receptors for Mycobacterium tuberculosis [J].
Ernst, JD .
INFECTION AND IMMUNITY, 1998, 66 (04) :1277-1281