A particle migrating randomly on a sphere

被引:50
作者
Brillinger, DR
机构
[1] Statistics Department, University of California, Berkeley
基金
美国国家科学基金会;
关键词
drift; great circle path; likelihood ratio; pole-seeking; skew product; spherical Brownian motion; stochastic differential equation; travel time;
D O I
10.1023/A:1022869817770
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a particle moving on the surface of the unit sphere in R-3 and heading towards a specific destination with a constant average speed, but subject to random deviations. The motion is modeled as a diffusion with drift restricted to the surface of the sphere. Expressions are set down for various characteristics of the process including expected travel time to a cap, the limiting distribution, the likelihood ratio and some estimates for parameters appearing in the model.
引用
收藏
页码:429 / 443
页数:15
相关论文
共 23 条
[1]   THEORY OF STOCHASTIC NMR-SPECTROSCOPY - APPLICATION OF ITO AND STRATONOVICH CALCULUS [J].
BARTHOLDI, E ;
WOKAUN, A ;
ERNST, RR .
CHEMICAL PHYSICS, 1976, 18 (1-2) :57-84
[2]  
BASAWA IV, 1980, STATISTICAL INFERENC
[3]  
Bhattacharya RN., 1990, STOCHASTIC PROCESSES
[4]   RANDOM-WALK ON SPHERES [J].
BINGHAM, NH .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 22 (03) :169-&
[5]  
DAWSON DA, 1981, STAT RELATED TOPICS
[6]  
Gihman I., 1972, STOCHASTIC DIFFERENT
[7]   NORMAL DISTRIBUTION FUNCTIONS ON SPHERES AND MODIFIED BESSEL FUNCTIONS [J].
HARTMAN, P ;
WATSON, GS .
ANNALS OF PROBABILITY, 1974, 2 (04) :593-607
[8]  
Ito K., 1965, DIFFUSION PROCESSES
[9]  
Karlin S., 1981, 2 COURSE STOCHASTIC
[10]  
KENDALL DG, 1974, J R STAT SOC B, V36, P365